Advertisement

Investigation of the structure and magnetic properties of Sn substituted Li-Zn ferrites fabricated by sol–gel process

  • Hao-ming Zhang
  • Zhi WangEmail author
  • Jia-jia Pei
  • Yu Gao
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • 29 Downloads

Abstract

A series of Sn doped Li-Zn ferrite powders with composition of Li(0.2+0.5x)Zn0.6SnxFe(2.2−1.5x)O4 (x = 0.00, 0.02, 0.04, 0.06, and 0.08) are synthesized by sol–gel process. The ring-shaped bulk samples of all compositions are obtained by sintering at 950 °C for 3 h, and all the structural and magnetic measurements were carried out on the sintered bulk samples. X-ray diffraction (XRD) patterns confirmed the formation of single-phase spinel structure when x ≤ 0.06 and the second phase of SnO2 at x = 0.08. Field emission scanning electron micrograph (FE-SEM) is used to observe the surface morphology of the bulk samples and particle sizes (DSEM). Micrograph of the sample for x = 0.08 shows many small particles appearing on the surface of the aggregation bulk samples. Vibrating sample magnetometer (VSM) is employed to study the saturation magnetization (Ms) and coercivity (Hc). The Ms displays a downtrend with the increasing of doping concentration and all samples have a lower coercivity of less than 30 Oe. Initial permeability (μi) and Curie temperature (Tc) are measured in a furnace using HP4294A impedance analyzer. The μi increases with the Sn4+ concentration until x = 0.06 and the Tc decreases with the Sn4+ concentration. The cation distribution estimated from XRD pattern and magnetic properties analyses suggest that Li+ ions appear in the tetrahedral sites with increasing of Sn4+ and Li+ contents.

Highlights

  • Li(0.2+0.5x)Zn0.6SnxFe(2.2−1.5x)O4 ferrites were first prepared by sol-gel method.

  • Abnormal tiny particles appear on the surface of bulk sample of x = 0.08.

  • The initial permeability increases remarkably with the doping of Li+ and Sn4+.

  • The cation distribution explains the change of saturation magnetization accurately.

  • The calculated αY-K angles confirm the decrease of A–B interaction.

Keywords

Sol–gel auto-combustion method Li-Zn ferrites Sn4+ doping Cation distribution Magnetic properties 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (under Grant No. 51271130).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bhandare SV, Kumar R, Anupama AV, Choudhary HK, Jali VM, Sahoo B (2017) Annealing temperature dependent structural and magnetic properties of MnFe2O4 nanoparticles grown by sol-gel auto-combustion method. J Magn Magn Mater 433:29–34CrossRefGoogle Scholar
  2. 2.
    Rathod V, Anupama AV, Jali VM, Hiremath VA, Sahoo B (2017) Combustion synthesis, structure and magnetic properties of Li-Zn ferrite ceramic powders. Ceram Int 43:14431–14440CrossRefGoogle Scholar
  3. 3.
    Praveena K, Chen HS, Liu HL, Sadhana K, Murthy SR (2016) Enhanced magnetic domain relaxation frequency and low power losses in Zn2+ substituted manganese ferrites potential for high frequency applications. J Magn Magn Mater 420:129–142CrossRefGoogle Scholar
  4. 4.
    Sutradhar S, Das S, Chakrabarti PK (2013) Magnetic and enhanced microwave absorption properties of nanoparticles of Li0.32Zn0.26Cu0.1Fe2.32O4 encapsulated in carbon nanotubes. Mater Lett 95:145–148CrossRefGoogle Scholar
  5. 5.
    Phong PT, Nam PH, Manh DH, Lee IJ (2017) Mn0.5Zn0.5Fe2O4 nanoparticles with high intrinsic loss power for hyperthermia therapy. J Magn Magn Mater 433:76–83CrossRefGoogle Scholar
  6. 6.
    Ruiz MS, Jacobo SE (2012) Electromagnetic properties of lithium zinc ferrites doped with aluminum. Phys B 407:3274–3277CrossRefGoogle Scholar
  7. 7.
    Pullar RC (2012) Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater Sci 57:1191–1334CrossRefGoogle Scholar
  8. 8.
    Yang Y, Wang F, Shao J, Huang D, He H, Trukhanov AV, Trukhanov SV (2018) Influence of Nd-NbZn co-substitution on structural, spectral and magnetic properties of M-type calcium-strontium hexaferrites Ca0.4Sr0.6-xNdxFe12.0-x(Nb0.5Zn0.5)xO19. J Alloys Compd 765:616–623CrossRefGoogle Scholar
  9. 9.
    Nikmanesh H, Eshraghi M, Karimi S (2019) Cation distribution, magnetic and structural properties of CoCrxFe2-xO4: effect of calcination temperature and chromium substitution. J Magn Magn Mater 471:294–303CrossRefGoogle Scholar
  10. 10.
    Tang ZX, Sorensen CM, Klabunde KJ, Hadjipanayis GC (1991) Size-dependent curie temperature in nanoscale MnFe2O4 particles. Phys Rev Lett 67:3602–3605CrossRefGoogle Scholar
  11. 11.
    Fang QQ, Bao HW, Fang DM, Wang JZ, Li XG (2004) The effect of Zn-Nb substitution on magnetic properties of strontium hexaferrite nanoparticles. J Magn Magn Mater 278:122–126CrossRefGoogle Scholar
  12. 12.
    Thandapani P, Viswanathan MR, Denardin JC (2018) Magnetocaloric effect and universal curve behavior in superparamagnetic zinc ferrite nanoparticles synthesized via microwave assisted co-precipitation method. Phys Status Solidi A 215:1700842CrossRefGoogle Scholar
  13. 13.
    Hankare PP, Patil RP, Sankpal UB, Garadkar KM, Sasikala R, Tripathi AK, Mulla IS (2010) Magnetic, dielectric and complex impedance spectroscopic studies of nanocrystalline Cr substituted Li-ferrite. J Magn Magn Mater 322:2629–2633CrossRefGoogle Scholar
  14. 14.
    Pei JJ, Wang Z (2018) Effect of Bi-Co co-doping on the microstructure and magnetic properties of NiMgCuZn ferrites. J Magn Magn Mater 465:598–602CrossRefGoogle Scholar
  15. 15.
    Reddy PVB, Ramesh B, Reddy CG (2010) Electrical conductivity and dielectric properties of zinc substituted lithium ferrites prepared by sol-gel method. Phys B 405:1852–1856CrossRefGoogle Scholar
  16. 16.
    Maisnam M, Phanjoubam S, Sarma HNK, Prakash C, Devi LR, Thakur OP (2005) Structural and DC resistivity behaviour of Li-Mn-Ni ferrites substituted with trace amount of Co2+. Phys B 370:1–5CrossRefGoogle Scholar
  17. 17.
    Lin Q, Ye Z, Lei C, Huang H, Xu J, He Y (2013) Microstructure and magnetic research of NiCuZn ferrite by Co, Bi compound doped. Mater Res Innov 17:S287–S291CrossRefGoogle Scholar
  18. 18.
    Rezlescu N, Rezlescu E, Craus ML, Pasnicu C (1995) Li-Zn ferrites with nonmagnetic additives. Cryst Res Technol 30:33–41CrossRefGoogle Scholar
  19. 19.
    Ahmed MA, Rady KE, Shams MS (2015) Enhancement of electric and magnetic properties of Mn-Zn ferrite by Ni-Ti ions substitution. J Alloys Compd 622:269–275CrossRefGoogle Scholar
  20. 20.
    Maisnam M, Phanjoubam S, Sarma HNK, Prakash C, Devi LR, Thakur OP (2004) Magnetic properties of vanadium-substituted lithium zinc titanium ferrite. Mater Lett 58:2412–2414CrossRefGoogle Scholar
  21. 21.
    Rezlescu N, Sachelarie L, Rezlescu L, Rezlescu E, Popa PD (2002) Sintering behaviour and properties of LiZn ferrite doped with PbO. Phys Status Solidi A 191:560–570CrossRefGoogle Scholar
  22. 22.
    Manikandan V, Vanitha A, Kumar ER, Chandrasekaran J (2017) Effect of sintering temperature on structural and dielectric properties of Sn substituted CuFe2O4 nanoparticles. J Magn Magn Mater 423:250–255CrossRefGoogle Scholar
  23. 23.
    Ji HN, Lan ZW, Yu Z, Sun K, Li LZ (2009) Influence of Sn-substitution on temperature dependence and magnetic disaccommodation of manganese-zinc ferrites. J Magn Magn Mater 321:2121–2124CrossRefGoogle Scholar
  24. 24.
    Arani ME, Isfahani MJN, Kashi MA (2010) Preparation and magnetic studies of nickel ferrite nanoparticles substituted by Sn4+ and Cu2+. J Magn Magn Mater 322:2944–2947CrossRefGoogle Scholar
  25. 25.
    Manikandan V, Priyadharsini N, Kavita S, Chandrasekaran J (2017) Sintering treatment effects on structural, dielectric and magnetic properties of Sn substituted NiFe2O4 nanoparticles. Superlattices Microst 109:648–654CrossRefGoogle Scholar
  26. 26.
    Ali MA, Uddin MM, Khan MNI, Chowdhury FUZ, Haque SM (2017) Structural, morphological and electrical properties of Sn-substituted Ni-Zn ferrites synthesized by double sintering technique. J Magn Magn Mater 424:148–154CrossRefGoogle Scholar
  27. 27.
    Rezlescu N, Doroftei C, Rezlescu E, Popa PD (2006) Structure and humidity sensitive electrical properties of the Sn4+ and/or Mo6+ substituted Mg ferrite. Sens Actuators B 115:589–595CrossRefGoogle Scholar
  28. 28.
    Gabal MA, El-Shishtawy RM, Al Angari YM (2012) Structural and magnetic properties of nano-crystalline Ni-Zn ferrites synthesized using egg-white precursor. J Magn Magn Mater 324:2258–2264CrossRefGoogle Scholar
  29. 29.
    Gao Y, Wang Z, Pei JJ, Zhang HM (2018) Structure and magnetic properties correlated with cation distribution of Ni0.5Mo Zn0.5Fe2O4 ferrites prepared by sol–gel auto-combustion method. Ceram Int 44:20148–20153CrossRefGoogle Scholar
  30. 30.
    Ji H, Lan Z, Xu Z, Zhang H (2013) Magnetic and Mössbauer studies of MnZnTiFeO spinel ferrites: effect of cation distribution. IEEE Trans Magn 49:4277–4280CrossRefGoogle Scholar
  31. 31.
    Slimani Y, Gungunes H, Nawaz M, Manikandan A, HSEl Sayed, Almessiere MA, Sozeri H, Shirsath SE, Ercan I, Baykal A (2018) Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Ceram Int 44:14242–14250CrossRefGoogle Scholar
  32. 32.
    Assar ST, Abosheiasha HF, Nimr MKEl (2014) Comparison study of the magnetic permeability and dc conductivity of Co-Ni-Li ferrite nanoparticles and their bulk counterparts. J Magn Magn Mater 354:1–6CrossRefGoogle Scholar
  33. 33.
    Hou WX, Wang Z (2015) Structural and magnetic properties of Ni0.15Mg0.1Cu0.3Zn0.45Fe2O4 ferrite prepared by NaOH-precipitation method. Mater Sci Eng B 199:57–61CrossRefGoogle Scholar
  34. 34.
    Sun K, Wu GH, Wang B, Zhong QY, Yang Y, Yu Z, Wu CJ, Wei PW, Jiang XN, Lan ZW (2015) Cation distribution and magnetic property of Ti/Sn-substituted manganese-zinc ferrites. J Alloys Compd 650:363–369CrossRefGoogle Scholar
  35. 35.
    Zaspalis V, Tsakaloudi V, Papazoglou E, Kolenbrander M, Guenther R, Valk PVD (2004) Development of a new MnZn-ferrite soft magnetic material for high temperature power applications. J. Electroceram. 13:585–591CrossRefGoogle Scholar
  36. 36.
    Srinivasan G, Hayes R, Bichurin MI (2003) Low frequency and microwave magnetoelectric effects in thick film heterostructures of lithium zinc ferrite and lead zirconate titanate. Solid State Commun 128:261–266CrossRefGoogle Scholar
  37. 37.
    Yang B, Wang Z (2016) The structure and magnetic properties of NiCuZn ferrites sintered via a two-step sintering process. J Sol–Gel Sci Technol 80:840–847CrossRefGoogle Scholar
  38. 38.
    Huili H, Grindi B, Viau G, Tahar LB (2016) Influence of the stoichiometry and grain morphology on the magnetic properties of Co substituted Ni-Zn nanoferrites. Ceram Int 42:17594–17604CrossRefGoogle Scholar
  39. 39.
    Gao Y, Wang Z, Pei JJ, Zhang HM (2019) Structural, elastic, thermal and soft magnetic properties of Ni-Zn-Li ferrites. J Alloys Compd 774:1233–1242CrossRefGoogle Scholar
  40. 40.
    Sharma R, Thakur P, Sharma P, Sharma V (2017) Ferrimagnetic Ni2+ doped Mg-Zn spinel ferrite nanoparticles for high density information storage. J Alloys Compd 704:7–17CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ScienceTianjin UniversityTianjinChina

Personalised recommendations