Advertisement

Modification in the microstructural and electrochromic properties of spray-pyrolysed WO3 thin films upon Mo doping

  • Anil Kumar
  • Chandra Shekhar Prajapati
  • P. P. SahayEmail author
Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • 20 Downloads

Abstract

WO3 thin films were grown onto the glass and fluorine-doped tin oxide-coated glass substrates using chemical spray pyrolysis technique. X-ray diffraction analyses reveal that all the films possess orthorhombic phase of WO3. Morphologies of the films have been found to vary with Mo-doping concentrations. Three-dimensional atomic force micrographs reveal that the 5 at% Mo-doped film has the maximum image surface area and is optimal for improved electrochromic performance. Cyclic voltammetry studies show that the cathodic and anodic peak current densities have the highest values for the 5 at% Mo-doped WO3 film. Relative to the undoped film, the change from coloured to bleached state is faster for the 5 at% Mo-doped WO3 film. Considering the reversibility and the switching response from chronoamperometry and the coloration efficiency from cyclic voltammetry, it has been concluded that the 5 at% Mo-doped WO3 film has an optimal electrochromic response.

By analysing the results of cyclic voltammetry and chronoamperometry measurements, it has been found that the 5 at% Mo-doped WO3 film has optimal electrochromic performance.

Highlights

  • As-deposited films possess orthorhombic phase of WO3.

  • 5 at% Mo-doped WO3 films have the maximum image surface area.

  • WO3 film doped with 5 at% Mo exhibits fastest switching response.

  • 5 at% Mo-doped film exhibits optimal electrochromic performance.

Keywords

Mo-doped WO3 thin films Cyclic voltammetry Coloration efficiency Chronoamperometry Electrochromism 

Notes

Acknowledgements

We express our gratitude to Centre for Interdisciplinary Research, MNNIT Allahabad, India for providing XRD and UV–Vis measurements, and Sophisticated Analytical Instrument Facility, Indian Institute of Technology Bombay, India for SEM and AFM characterisation facilities.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Somani PR, Radhakrishnan S (2002) Mater Chem Phys 77:117CrossRefGoogle Scholar
  2. 2.
    Granqvist CG (1995) Handbook of Inorganic Electrochromic Materials, Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Kahl JL, Faulkner LR, Dwarakanath K, Tachikawa H (1986) J Am Chem Soc 108:5434CrossRefGoogle Scholar
  4. 4.
    Honda K, Ochiai J, Hayashi H (1986) J Chem Soc Chem Commun 1:168CrossRefGoogle Scholar
  5. 5.
    Bruinink J (1976) Electrochromic display devices. In: Kmetz AR, VonWilli FK (Eds.) Non-emissive Electro-optic Displays. Plenum Press, New YorkGoogle Scholar
  6. 6.
    Bernard MC, Goff AH-L, Zeng W (1998) Electrochem Acta 44:781CrossRefGoogle Scholar
  7. 7.
    Kostis I, Vasilopoulou M, Soultati A, Argitis P, Konofaos N, Douvas AM, Vourdas N, Papadimitropoulos G, Davazoglou D (2013) Microelectron Eng 111:149CrossRefGoogle Scholar
  8. 8.
    Bhosale NY, Mali SS, Hong CK, Kadam AV (2017) Electrochim Acta 246:1112CrossRefGoogle Scholar
  9. 9.
    Li C, Hsieh JH, Hung M-T, Huang BQ (2015) Thin Solid Films 587:75CrossRefGoogle Scholar
  10. 10.
    Karuppasamy KM, Subrahmanyam A (2008) J Phys D: Appl Phys 41:035302. 6ppCrossRefGoogle Scholar
  11. 11.
    Rougier A, Portemer F, Quede A, Marssi ME (1999) Appl Surf Sci 153:1CrossRefGoogle Scholar
  12. 12.
    Wang Z, Hu X (2001) Electrochim Acta 46:1951CrossRefGoogle Scholar
  13. 13.
    Ozer N, Lampert CM (1999) Thin Solid Films 349:205CrossRefGoogle Scholar
  14. 14.
    Hepel M, Redmond H, Dela I (2007) Electrochim Acta 52:3541CrossRefGoogle Scholar
  15. 15.
    Yin Y, Lan C, Hu S, Li C (2018) J Alloy Compd 739:623CrossRefGoogle Scholar
  16. 16.
    Paipitak K, Techitdheera W, Porntheeraphat S, Pecharapa W (2013) Energy Procedia 34:689CrossRefGoogle Scholar
  17. 17.
    Bathe SR, Patil PS (2007) J Phys D: Appl Phys 40:7423CrossRefGoogle Scholar
  18. 18.
    Green SV, Pehlivan E, Granqvist CG, Niklasson GA (2012) Sol Energy Mater Sol Cells 99:339CrossRefGoogle Scholar
  19. 19.
    Cazzanelli E, Castriota M, Kalendarev R, Kuzmin A, Purans J (2003) Ionics 9:95CrossRefGoogle Scholar
  20. 20.
    O-Rueda de León JM, Acosta DR, Pal U, Casta˜neda L (2011) Electrochim Acta 56:2599CrossRefGoogle Scholar
  21. 21.
    Madhavi V, Kumar PJ, Kondaiah P, Hussain OM, Uthanna S (2014) Ionics 20:1737CrossRefGoogle Scholar
  22. 22.
    Mukherjee R, Kushwaha A, Sahay PP (2014) Electron Mater Lett 10:401CrossRefGoogle Scholar
  23. 23.
    Mukherjee R, Prajapati CS, Sahay PP (2014) J Therm Spray Technol 23:1445CrossRefGoogle Scholar
  24. 24.
    Rajagopal S, Nataraj D, Mangalaraj D, Djaoued Y, Robichaud J, Khyzhun OY (2009) Nanoscale Res Lett 4:1335CrossRefGoogle Scholar
  25. 25.
    Muller U (1993) Inorganic Structural Chemistry. Wiley, ChichesterGoogle Scholar
  26. 26.
    Wahab MA (2010) Solid State Physics. Narosa Publishing House, New DelhiGoogle Scholar
  27. 27.
    Beena D, Lethy KJ, Vinodkumar R, Pillai VPM, Ganesan V, Phase DM, Sudheer SK (2009) Appl Surf Sci 255:8334CrossRefGoogle Scholar
  28. 28.
    Goswami A (2005) Thin Film Fundamentals, New Age International (P) Ltd., New DelhiGoogle Scholar
  29. 29.
    Asghari Z, Eshghi H (2017) J Electron Mater 46:1439CrossRefGoogle Scholar
  30. 30.
    Deb SK (1973) Philos Mag 27:801CrossRefGoogle Scholar
  31. 31.
    Sharon M, Sharan MK, Jawalekar SR (1984) Sol Energy Mater 10:329CrossRefGoogle Scholar
  32. 32.
    Patil PS, Patil PR, Kamble SS, Pawar SH (2000) Sol Energy Mater Sol Cells 60:143CrossRefGoogle Scholar
  33. 33.
    Patil PR, Pawar SH, Patil PS (2000) Solid State Ion 136–137:505CrossRefGoogle Scholar
  34. 34.
    Sivakumar R, A. Raj ME, Subramanian B, Jayachandran M, Trivedi DC, Sanjeeviraja C (2004) Mater Res Bull 39:1479CrossRefGoogle Scholar
  35. 35.
    Meenakshi M, Gowthami V, Perumal P, Sivakumar R, Sanjeeviraja C (2015) Electrochim Acta 174:302CrossRefGoogle Scholar
  36. 36.
    Kalagi SS, Mali SS, Dalavi DS, Inamdar AI, Im H, Patil PS (2012) Electrochim Acta 85:501CrossRefGoogle Scholar
  37. 37.
    Nicholson RS, Shain I (1964) Anal Chem 36:706CrossRefGoogle Scholar
  38. 38.
    Mukherjee R, Sahay PP (2016) J Alloy Compd 660:336CrossRefGoogle Scholar
  39. 39.
    Lu Y, Liu L, Mandler D, Lee PS (2013) J Mater Chem C 1:7380CrossRefGoogle Scholar
  40. 40.
    Lee SH, Cheong HM, Tracy CE, Mascarenhas A, Pitts JR, Jorgensen G, Deb SK (2000) Appl Phys Lett 76:3908CrossRefGoogle Scholar
  41. 41.
    Alsawafta M, Golestani YM, Phonemac T, Badilescu S, Stancovski V, Truong V-V (2014) J Electrochem Soc 161:H276CrossRefGoogle Scholar
  42. 42.
    Mishra RK, Prajapati CS, Sahay PP (2018) J Alloy Compd 749:172CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anil Kumar
    • 1
  • Chandra Shekhar Prajapati
    • 2
  • P. P. Sahay
    • 1
    Email author
  1. 1.Department of PhysicsMotilal Nehru National Institute of Technology AllahabadAllahabadIndia
  2. 2.Centre for Nano Science and EngineeringIndian Institute of Science BangaloreBengaluruIndia

Personalised recommendations