Advertisement

Photoluminescent porous aerogel monoliths containing ZnEu-complex: the first example of aerogel modified with a heteronuclear metal complex

  • Kh. E. Yorov
  • S. Yu. Kottsov
  • А. Е. Baranchikov
  • O. V. Boytsova
  • M. A. Kiskin
  • E. A. Varaksina
  • G. P. Kopitsa
  • S. А. Lermontov
  • A. A. Sidorov
  • V. Pipich
  • A. Len
  • A. V. Agafonov
  • V. K. IvanovEmail author
Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • 21 Downloads

Abstract

A procedure for the chemical immobilization of a new ZnII–EuIII heterobimetallic complex in the SiO2 aerogel matrix has been developed. In this Zn–Eu complex, a peripheral non-luminescent Zn ion acts as a binder to a silica matrix and prevents direct interaction of rare-earth ions with OH− and NH− groups in the silica matrix, which would have a detrimental effect on the luminescence of lanthanides. The procedure includes the synthesis of complexes, co-gelation of the obtained complex with SiO2 sol, the washing of lyogels, and their subsequent supercritical drying in CO2. The composition and properties of the obtained aerogels were investigated using a low-temperature nitrogen adsorption technique, helium pycnometry, FTIR, Raman, UV–visible, and luminescence spectroscopy, XPS, PXRD, SEM, TEM, TGA combined with mass spectrometry, and small-angle neutron scattering. The aerogels modified with the ZnII–EuIII complex demonstrated strong red luminescence upon excitation with UV light.

Highlights

  • An approach is proposed for anchoring heterobimetallic complexes to silica aerogel matriх.

  • In anchored complex, Zn atoms shield Eu from luminescence quenchers.

  • Silica aerogel modified with Zn–Eu complex demonstrated strong red luminescence.

Keywords

Aerogel Heteronuclear metal complex Silica Luminescence Structure 

Notes

Acknowledgements

The authors are grateful to S.R. Kiraev (Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia) for assistance in the synthesis of the initial complexes, T.B. Shatalova (Lomonosov Moscow State University) for assistance in conducting thermal analysis of samples, L.A. Azarova (B.P. Konstantinov St. Petersburg Nuclear Physics Institute, Gatchina, Russia) and N.V. Tsvigun (IFSRC “Crystallography and Photonics” of the Russian Academy of Sciences, Moscow, Russia) for assistance in measuring USANS and SANS, and T.B. Khamova (Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences, St. Petersburg, Russia) for assistance in nitrogen adsorption on aerogel samples. This work was supported by the Russian Foundation for Basic Research (Project Nos. 18-29-06014 and 16-29-10736). Investigations were carried out using the equipment of the Joint Research Center for Physical Methods of Research of Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences. M. Kiskin thanks VolkswagenStiftung, Trilateral Partnership project “Multifunctional molecular materials—bridging magnetism and luminescence”.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2019_4958_MOESM1_ESM.docx (1.4 mb)
Supplementary Information

References

  1. 1.
    Rankin JM, Baker S, Klabunde KJ (2014) Mesoporous aerogel titanium oxide–silicon oxide combinations as adsorbents for an azo-dye. Microporous Mesoporous Mater 190:105–108.  https://doi.org/10.1016/j.micromeso.2014.01.027 CrossRefGoogle Scholar
  2. 2.
    Zhu Y, Shimizu T, Kitajima T et al. (2015) Synthesis of robust hierarchically porous zirconium phosphate monolith for efficient ion adsorption. New J Chem 39:2444–2450.  https://doi.org/10.1039/C4NJ01749H CrossRefGoogle Scholar
  3. 3.
    Serrano E, Linares N, Garcia-Martinez J, Berenguer JR (2013) Sol–gel coordination chemistry: building catalysts from the bottom-up. ChemCatChem 5:844–860.  https://doi.org/10.1002/cctc.201200938 CrossRefGoogle Scholar
  4. 4.
    Brinker CJ, Scherer GW (1990) Applications. In: Sol–gel science. Academic Press, Ltd., London, p 838–880Google Scholar
  5. 5.
    Tadanaga K, Imai K, Tatsumisago M, Minami T (2000) Preparation of AgI–Al2O3 composites with high ionic conductivity using Al2O3 aerogel and xerogel. J Electrochem Soc 147:4061–4064.  https://doi.org/10.1149/1.1394019 CrossRefGoogle Scholar
  6. 6.
    Escribano P, Julián-López B, Planelles-Aragó J et al. (2008) Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials. J Mater Chem 18:23–40.  https://doi.org/10.1039/B710800A CrossRefGoogle Scholar
  7. 7.
    Corma A, Garcia H (2006) Silica-bound homogenous catalysts as recoverable and reusable catalysts in organic synthesis. Adv Synth Catal 348:1391–1412.  https://doi.org/10.1002/adsc.200606192 CrossRefGoogle Scholar
  8. 8.
    Hartley FR, Vezey PN (1977) Supported transition metal complexes as catalysts. Adv Organomet Chem 15:189–234.  https://doi.org/10.1016/S0065-3055(08)60129-X CrossRefGoogle Scholar
  9. 9.
    Lermontov SA, Malkova AN, Sipyagina NA et al. (2017) Facile synthesis of fluorinated resorcinol–formaldehyde aerogels. J Fluor Chem 193:1–7.  https://doi.org/10.1016/j.jfluchem.2016.11.001 CrossRefGoogle Scholar
  10. 10.
    Fadieiev YM, Smola SS, Rusakova MY et al. (2018) Spectral-luminescent properties of aerosils with adsorbed adducts of Eu(III) tris-β-diketonates and 1,10-phenanthroline. J Lumin 194:631–635.  https://doi.org/10.1016/j.jlumin.2017.09.025 CrossRefGoogle Scholar
  11. 11.
    Tagaya M, Ogawa M (2006) Luminescence of tris(8-quinolinato)aluminum(III) (Alq3) adsorbed into mesoporous silica. Chem Lett 35:108–109.  https://doi.org/10.1246/cl.2006.108 CrossRefGoogle Scholar
  12. 12.
    Yermakov YI, Kuznetsov BN, Zakharov VA (1981) Catalysis by supported complexes. Elsevier Scientific Pub. Co., AmsterdamGoogle Scholar
  13. 13.
    Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109:4283–4374.  https://doi.org/10.1021/cr8003983 CrossRefGoogle Scholar
  14. 14.
    Badini GE, Grattan KTV, Tseung ACC (1995) Sol–gels with fiber-optic chemical sensor potential: effects of preparation, aging, and long-term storage. Rev Sci Instrum 66:4034–4040.  https://doi.org/10.1063/1.1145413 CrossRefGoogle Scholar
  15. 15.
    Gupta KC, Kumar Sutar A, Lin CC (2009) Polymer-supported Schiff base complexes in oxidation reactions. Coord Chem Rev 253:1926–1946.  https://doi.org/10.1016/j.ccr.2009.03.019 CrossRefGoogle Scholar
  16. 16.
    Annis DA, Jacobsen EN (1999) Polymer-supported chiral Co(Salen) complexes: synthetic applications and mechanistic investigations in the hydrolytic kinetic resolution of terminal epoxides. J Am Chem Soc 121:4147–4154.  https://doi.org/10.1021/ja984410n CrossRefGoogle Scholar
  17. 17.
    Çetinkaya B, Seçkin T, Özdemir I, Alici B (1998) Synthesis and catalytic properties of arene complexes of ruthenium (II) prepared from Si, Zr, Ti and Al alkoxides by the sol–gel process. J Mater Chem 8:1835–1838.  https://doi.org/10.1039/a802576b CrossRefGoogle Scholar
  18. 18.
    Yorov KE, Yapryntsev AD, Baranchikov AE et al. (2018) Luminescent alumina-based aerogels modified with tris(8-hydroxyquinolinato)aluminum. J Sol-Gel Sci Technol 86:400–409.  https://doi.org/10.1007/s10971-018-4647-5 CrossRefGoogle Scholar
  19. 19.
    Pajonk GMM (1997) Catalytic aerogels. Catal Today 35:319–337.  https://doi.org/10.1016/S0920-5861(96)00163-0 CrossRefGoogle Scholar
  20. 20.
    Murphy EF, Schmid L, Bürgi T et al. (2001) Nondestructive sol–gel immobilization of metal(salen) catalysts in silica aerogels and xerogels. Chem Mater 13:1296–1304.  https://doi.org/10.1021/cm001187w CrossRefGoogle Scholar
  21. 21.
    Seçkin T, Çetinkaya B, Özdemir I (2000) Sol–gel synthesis of Ru(II) complex of 3-4,5-dihydroimidazol-1-yl-propyltriethoxysilane aerogels and xerogels. Polym Bull 44:47–53.  https://doi.org/10.1007/s002890050572 CrossRefGoogle Scholar
  22. 22.
    Schmid L, Rohr M, Baiker A (1999) A mesoporous ruthenium silica hybrid aerogel with outstanding catalytic properties in the synthesis of N,N-diethylformamide from CO2, H2 and diethylamine. Chem Commun 0:2303–2304.  https://doi.org/10.1039/a906956i
  23. 23.
    Leventis N, Elder IA, Rolison DR et al. (1999) Durable modification of silica aerogel monoliths with fluorescent 2,7-diazapyrenium moieties. Sensing oxygen near the speed of open-air diffusion. Chem Mater 11:2837–2845.  https://doi.org/10.1021/cm9901966 CrossRefGoogle Scholar
  24. 24.
    Dang TT, Shan SP, Ramalingam B, Seayad AM (2015) An efficient heterogenized palladium catalyst for N-alkylation of amines and α-alkylation of ketones using alcohols. RSC Adv 5:42399–42406.  https://doi.org/10.1039/C5RA07225E CrossRefGoogle Scholar
  25. 25.
    Grau A, Baeza A, Serrano E et al. (2015) Mesoporous metal complex-silica aerogels for environmentally friendly amination of allylic alcohols. ChemCatChem 7:87–93.  https://doi.org/10.1002/cctc.201402599 CrossRefGoogle Scholar
  26. 26.
    Rohr M, Günther M, Jutz F et al. (2005) Evaluation of strategies for the immobilization of bidentate ruthenium–phosphine complexes used for the reductive amination of carbon dioxide. Appl Catal A Gen 296:238–250.  https://doi.org/10.1016/j.apcata.2005.08.025 CrossRefGoogle Scholar
  27. 27.
    Kröcher O, Köppel RA, Fröba M, Baiker A (1998) Silica hybrid gel catalysts containing group(VIII) transition metal complexes: preparation, structural, and catalytic properties in the synthesis of N,N-dimethylformamide and methyl formate from supercritical carbon dioxide. J Catal 178:284–298.  https://doi.org/10.1006/jcat.1998.2151 CrossRefGoogle Scholar
  28. 28.
    Kröcher O, Köppel RA, Baiker A (1996) Sol–gel derived hybrid materials as heterogeneous catalysts for the synthesis of N,N-dimethylformamide from supercritical carbon dioxide. Chem Commun 0:1497–1498.  https://doi.org/10.1039/CC9960001497 CrossRefGoogle Scholar
  29. 29.
    Glauser SAC, Lee HWH (1997) Luminescent studies of fluorescent chromophore-doped silica aerogels for flat panel display applications. MRS Proc 471:331.  https://doi.org/10.1557/PROC-471-331 CrossRefGoogle Scholar
  30. 30.
    Boyko IR, Ignatenko MA, Esenak K et al. (1995) Scintillator based on SiO2-aerogel. Nucl Instrum Methods Phys Res A 363:568–573.  https://doi.org/10.1016/0168-9002(95)00228-6 CrossRefGoogle Scholar
  31. 31.
    Reisfeld R (2001) Prospects of sol–gel technology towards luminescent materials. Opt Mater 16:1–7.  https://doi.org/10.1016/S0925-3467(00)00052-5 CrossRefGoogle Scholar
  32. 32.
    Bockhorst M, Heinloth K, Pajonk GMM et al. (1995) Fluorescent dye doped aerogels for the enhancement of Čerenkov light detection. J Non-Cryst Solids 186:388–394.  https://doi.org/10.1016/0022-3093(95)00064-X CrossRefGoogle Scholar
  33. 33.
    Utochnikova VV, Kuzmina NP (2016) Photoluminescence of lanthanide aromatic carboxylates. Russ J Coord Chem 42:679–694.  https://doi.org/10.1134/S1070328416090074 CrossRefGoogle Scholar
  34. 34.
    Stan CS, Marcotte N, Secula MS, Popa M (2014) A new photoluminescent silica aerogel based on N-hydroxysuccinimide–Tb(III) complex. J Sol-Gel Sci Technol 69:207–213.  https://doi.org/10.1007/s10971-013-3205-4 CrossRefGoogle Scholar
  35. 35.
    García-Murillo A, Carrillo-Romo FJ, Oliva-Uc J et al (2017) Effects of Eu content on the luminescent properties of Y2O3:Eu3+aerogels and Y(OH)3/Y2O3:Eu3+@SiO2 glassy aerogels Ceram Int 43:12196–12204.  https://doi.org/10.1016/j.ceramint.2017.06.079 CrossRefGoogle Scholar
  36. 36.
    Gutzov S, Danchova N, Kirilova R et al. (2017) Preparation and luminescence of silica aerogel composites containing an europium (III) phenanthroline nitrate complex. J Lumin 183:108–112.  https://doi.org/10.1016/j.jlumin.2016.11.029 CrossRefGoogle Scholar
  37. 37.
    Matthews LR, Wang X, Knobbe ET (1994) Concentration effects on the luminiscence behavior of europium (III) chloride- and organoeuropium-doped silicate gels. J Non-Cryst Solids 178:44–51.  https://doi.org/10.1016/0022-3093(94)90263-1 CrossRefGoogle Scholar
  38. 38.
    Lai DC, Dunn B, Zink JI (1996) Room temperature luminescence of silicate sol–gel materials containing trisodium tris(dipicolinato)neodymate(III). Inorg Chem 35:2152–2154.  https://doi.org/10.1021/ic951310z CrossRefGoogle Scholar
  39. 39.
    Radulescu A, Kentzinger E, Stellbrink J et al. (2005) KWS-3: the new (very) small-angle neutron scattering instrument based on focusing-mirror optics. Neutron News 16:18–21.  https://doi.org/10.1080/10448630500454270 CrossRefGoogle Scholar
  40. 40.
    Goerigk G, Varga Z (2011) Comprehensive upgrade of the high-resolution small-angle neutron scattering instrument KWS-3 at FRM II. J Appl Crystallogr 44:337–342.  https://doi.org/10.1107/S0021889811000628 CrossRefGoogle Scholar
  41. 41.
    Wignall GD, Bates FS (1987) Absolute calibration of small-angle neutron scattering data. J Appl Crystallogr 20:28–40.  https://doi.org/10.1107/S0021889887087181 CrossRefGoogle Scholar
  42. 42.
    Keiderling U (2002) The new “BerSANS-PC” software for reduction and treatment of small angle neutron scattering data. Appl Phys A Mater Sci Process 74:s1455–s1457.  https://doi.org/10.1007/s003390201561 CrossRefGoogle Scholar
  43. 43.
    Schmatz W, Springer T, Schelten J, Ibel K (1974) Neutron small-angle scattering: experimental techniques and applications. J Appl Crystallogr 7:96–116.  https://doi.org/10.1107/S0021889874008880 CrossRefGoogle Scholar
  44. 44.
    Hilder M, Lezhnina M, Junk PC, Kynast UH (2013) Spectroscopic properties of lanthanoid benzene carboxylates in the solid state: Part 3. N-heteroaromatic benzoates and 2-furanates. Polyhedron 52:804–809.  https://doi.org/10.1016/j.poly.2012.07.047 CrossRefGoogle Scholar
  45. 45.
    Egorov EN, Mikhalyova EA, Kiskin MA et al. (2013) Synthesis, structure, and properties of trinuclear pivalate {Zn2Eu} complexes with N-donor ligands. Russ Chem Bull 62:2141–2149.  https://doi.org/10.1007/s11172-013-0313-9 CrossRefGoogle Scholar
  46. 46.
    Goldberg A, Kiskin M, Shalygina O et al. (2016) Tetranuclear heterometallic {Zn2Eu2} complexes with 1-naphthoate anions: synthesis, structure and photoluminescence properties. Chem Asian J 11:604–612.  https://doi.org/10.1002/asia.201501315 CrossRefGoogle Scholar
  47. 47.
    Kiraev SR, Nikolaevskii SA, Kiskin MA et al. (2018) Synthesis, structure and photoluminescence properties of {Zn2Ln2} heterometallic complexes with anions of 1-naphthylacetic acid and N-donor heterocyclic ligands. Inorg Chim Acta 477:15–23.  https://doi.org/10.1016/j.ica.2018.02.011 CrossRefGoogle Scholar
  48. 48.
    Baumann TF, Gash AE, Chinn SC et al. (2005) Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chem Mater 17:395–401.  https://doi.org/10.1021/cm048800m CrossRefGoogle Scholar
  49. 49.
    Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, theory and applications in inorganic chemistry. Wiley, Hoboken, New JerseyGoogle Scholar
  50. 50.
    Al-Oweini R, El-Rassy H (2009) Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J Mol Struct 919:140–145.  https://doi.org/10.1016/j.molstruc.2008.08.025 CrossRefGoogle Scholar
  51. 51.
    Oehler JH (1976) Hydrothermal crystallization of silica gel. Bull Geol Soc Am 87:1143–1152.  https://doi.org/10.1130/0016-7606(1976)87<1143:HCOSG>2.0.CO;2 CrossRefGoogle Scholar
  52. 52.
    Ziegler C, Wolf A, Liu W et al. (2017) Modern inorganic aerogels. Angew Chem Int Ed 56:13200–13221.  https://doi.org/10.1002/anie.201611552 CrossRefGoogle Scholar
  53. 53.
    Beaucage G (1995) Approximations leading to a unified exponential/power-law approach to small-angle scattering. J Appl Crystallogr 28:717–728.  https://doi.org/10.1107/S0021889895005292 CrossRefGoogle Scholar
  54. 54.
    Beaucage G, Schaefer DWW (1994) Structural studies of complex systems using small-angle scattering: a unified Guinier/power-law approach. J Non-Cryst Solids 172–174:797–805.  https://doi.org/10.1016/0022-3093(94)90581-9 CrossRefGoogle Scholar
  55. 55.
    Glatter O (1982) Data treatment. In: Small-angle X-ray scattering. Academic Press, New York, p 119–165Google Scholar
  56. 56.
    Guiner A, Fournet G, Walker CB (1955) Small angle scattering of X-rays. J. Wiley Sons, New YorkGoogle Scholar
  57. 57.
    Schaefer DW (1989) Polymers, fractals, and ceramic materials. Science 243:1023–1027.  https://doi.org/10.1002/chir.22439 CrossRefGoogle Scholar
  58. 58.
    Yan B, Zhang H, Wang S, Ni J (1998) Luminescence properties of rare earth (Eu3+ and Tb3+) complexes with conjugated carboxylic acids and 1,10-phenanthroline incorporated in silica matrix. J Photochem Photobiol A Chem 112:231–238.  https://doi.org/10.1016/S1010-6030(97)00303-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kh. E. Yorov
    • 1
  • S. Yu. Kottsov
    • 2
    • 3
  • А. Е. Baranchikov
    • 3
  • O. V. Boytsova
    • 1
    • 3
  • M. A. Kiskin
    • 3
  • E. A. Varaksina
    • 4
    • 5
  • G. P. Kopitsa
    • 6
    • 7
  • S. А. Lermontov
    • 8
  • A. A. Sidorov
    • 3
  • V. Pipich
    • 9
  • A. Len
    • 10
  • A. V. Agafonov
    • 11
    • 12
  • V. K. Ivanov
    • 3
    • 11
    Email author
  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Dmitry Mendeleev University of Chemical Technology of RussiaMoscowRussia
  3. 3.Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscowRussia
  4. 4.Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of SciencesMoscowRussia
  5. 5.Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia
  6. 6.Petersburg Nuclear Physics Institute of National Research Centre “Kurchatov Institute”St. PetersburgRussia
  7. 7.Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of SciencesSt. PetersburgRussia
  8. 8.Institute of Physiologically Active Compounds of the Russian Academy of SciencesChernogolovkaRussia
  9. 9.Jülich Centre for Neutron ScienceForschungszentrum Jülich GmbHGarchingGermany
  10. 10.Wigner Research Centre for PhysicsInstitute for Solid State Physics and OpticsBudapestHungary
  11. 11.National Research Tomsk State UniversityTomskRussia
  12. 12.Krestov Institute of Solution Chemistry of the Russian Academy of SciencesIvanovoRussia

Personalised recommendations