Advertisement

Synthesis and magnetocaloric properties of La0.67Ca0.29Sr0.04MnO3 obtained from modified sol-gel Pechini method

  • V. E. Salazar-Muñoz
  • S. A. Palomares-Sánchez
  • I. Betancourt
  • T. J. Pérez-Juache
  • V. D. Compeán-García
  • A. Lobo GuerreroEmail author
Original Paper: Characterization methods of sol-gel and hybrid materials
  • 10 Downloads

Abstract

This work deals with the study of the physical properties of substituted lanthanum manganite, La0.67Ca0.29Sr0.04MnO3, prepared by using a modified sol-gel Pechini method. The manganite was obtained following the traditional Pechini method, but starting from an unusual mixture of precursors wherein manganese sulfate replaces the manganese nitrate. This single change induces variations on the physical properties of the compound. The phase crystallization was analyzed using X-ray diffraction along with the Rietveld method of refinement of the structure. Morphological analysis showed particle sizes around 0.5 µm organized in porous structures and forming cubic clusters. The manganite exhibits high crystallinity and second-order ferromagnetic–paramagnetic transition near room temperature. Also, the magnetocaloric effect and the maximum entropy change (ΔSMmax) were calculated by using a phenomenological model. The associated magnetic entropy change |ΔSM| and the relative cooling power have been determined from the phenomenological parameters as a function of the applied magnetic field. In the vicinity of the Curie temperature (TC), ΔSM reached a maximum value of 2.44 J/kgK when 3 T of magnetic strength was applied.

Highlights

  • Magnetocaloric properties of substituted lanthanum manganite.

  • Obtainment of La0.67Ca0.29Sr0.04MnO3 from modified Pechini method.

  • Crystallization of a substituted manganite porous structure.

  • Second order ferromagnetic-paramagnetic transition in substituted manganite.

Keywords

Substituted manganite Magnetic properties Magnetocaloric effect Rietveld refinement. 

Notes

Acknowledgements

V.E.S.-M. thanks CONACYT (México) for her scholar grant 429113. The authors also thank I. Kado Mercado-Elías (FI-UASLP) and G.G. López Rocha (IF-UASLP) for their lab assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Coey JMD, Viret M (1999) Mixed valence manganite. Adv Phys.  https://doi.org/10.1080/000187399243455
  2. 2.
    Ram NR, Prakash M, Naresh U, Kumar NS, Sarmash TS, Subbarao T, Kumar RJ, Kumar GR, Naidu KCB (2018) Review on magnetocaloric effect and materials. J Supercond Nov Magn.  https://doi.org/10.1007/S10948-018-4666-Z
  3. 3.
    Panwar S, Kumar V, Singh I (2017) A variational theory of Hall effect of Anderson lattice model: application to colossal magnetoresistance manganites (Re1−xAxMnO3). Solid State Commun.  https://doi.org/10.1016/J.SSC.2017.08.003
  4. 4.
    Afzal M, Xia C, Zhu B (2016) Lanthanum-doped calcium manganite (La0.1Ca0.9MnO3) cathode for advanced solid oxide fuel cell (SOFC). Mater Today Proc.  https://doi.org/10.1016/j.matpr.2016.06.014
  5. 5.
    Sahu DR, Mishra DK (2018) Comparison of magnetization and transport properties of processed La0.67Ca0.33MnO3 manganites for technological application. Int J Nano Biomat.  https://doi.org/10.1504/IJNBM.2018.094248
  6. 6.
    Tishin AM, Spichkin YI (2003) In: Coy JDM, DR Tilley, and Vij DR (eds) The magnetocaloric effect and its applications, 1st edn. IOP, New YorkGoogle Scholar
  7. 7.
    Hassine AB, Dhahri A, Bouazizi L, Oumezzine M, Hill EK (2016) Characterization and theoretical investigation of the magnetocaloric effect of La0.67Ba0.33Mn1–xSbxO3 compounds. Solid State Commun.  https://doi.org/10.1016/J.SSC.2016.02.005
  8. 8.
    Silva JA, Xavier MOS, Plaza EJR, Campoy JCP (2018) A theoretical approach to study the magnetic and magnetocaloric properties in lanthanum manganites. J Alloy Compd.  https://doi.org/10.1016/j.jallcom.2018.06.198
  9. 9.
    Gharsallah H, Bejar M, Dhahri E, Hill EK, Bessais L (2016) Prediction of magnetocaloric effect in La0.6Ca0.4−xSrxMnO3 compounds for x=0, 0.05 and 0.4 with phenomenological model. Ceram Int.  https://doi.org/10.1016/J.CERAMINT.2015.08.167
  10. 10.
    Zhou Y, Zhu X, Li S (2017) Structure, magnetic, electrical transport and magnetoresistance properties of La0.67Sr0.33Mn1−xFexO3 (x=0–0.15) doped manganite coatings. Ceram Int.  https://doi.org/10.1016/J.CERAMINT.2016.11.210
  11. 11.
    Gonchar LE (2018) Orbital state dependence of insulating manganites’ magnetic ordering. ‎J Magn Magn Mater.  https://doi.org/10.1016/j.jmmm.2018.06.012
  12. 12.
    Morelli DT, Mance AM, Mantese JV, Micheli AL (1996) Magnetocaloric properties of doped lanthanum manganite films. J Appl Phys.  https://doi.org/10.1063/1.360840
  13. 13.
    Dinesen AR, Linderoth S, Moerup S (2005) Direct and indirect measurement of the magnetocaloric effect in La0.67Ca0.33−xSrxMnOδ (x ε [0; 0.33]). J Phys Condens Matter.  https://doi.org/10.1088/0953-8984/17/39/011
  14. 14.
    Guo ZB, Du YW, Zhu JS, Huang H, Ding WP, Feng D (1996) Large magnetic entropy change in perovskite-type manganese oxides. Phys Rev Lett.  https://doi.org/10.1103/PhysRevLett.78.1142
  15. 15.
    Hernández-González EL, Palomares-Sánchez SA, Elizalde Galindo JT, Mirabal-García M (2015) Magnetocaloric effect near room temperature of La0.67Ca0.33−xSrxMnO3 (x=0.06, 0.07, 0.08) anganites. J Supercond Nov Magn.  https://doi.org/10.1007/S10948-014-2932-2
  16. 16.
    Ezaami A, Nasser NO, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A, Hill EK (2017) Physical properties of La0.7Ca0.2Sr0.1MnO3 manganite: a comparison between sol-gel and solid-state process. J Mater Sci Mater Electron.  https://doi.org/10.1007/S10854-016-5969-0
  17. 17.
    Ngida REA, Zawrah MF, Khattab RM, Heikal E (2019) Hydrothermal synthesis, sintering and characterization of nano La-manganite perovskite doped with Ca or Sr. Ceram Int.  https://doi.org/10.1016/j.ceramint.2018.11.188
  18. 18.
    Arabi A, Fazli M, Ehsani MH (2018) Synthesis and characterization of calcium-doped lanthanum manganite nanowires as a photocatalyst for degradation of methylene blue solution under visible light irradiation. Bull Mater Sci.  https://doi.org/10.1007/s12034-018-1590-6
  19. 19.
    Khellaf N, Kahoul A, Naamoune F, Alonso-Vante N (2017) Electrochemistry of nanocrystalline La0.5Sr0.5MnO3 perovskite for the oxygen reduction reaction in alkaline medium. Electrocatalysis.  https://doi.org/10.1007/s12678-017-0397-3
  20. 20.
    Amano ME, Betancourt I, Arellano-Jiménez MJ, Sánchez-Llamazares JL, Sánchez-Valdés CF (2016) The magnetocaloric response of submicron (LaAg)MnO3 manganite obtained by Pechini method. J Sol-gel Sci Technol.  https://doi.org/10.1007/S10971-015-3911-1
  21. 21.
    Pechini MP (1967) Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent 3,330,697Google Scholar
  22. 22.
    Dimesso L (2018) In: Klein L, Aparicio M, Jitianu A (eds) Handbook of sol-gel science and technology.  https://doi.org/10.1007/978-3-319-32101-1_123
  23. 23.
    Sunde TOL, Grande T, Einarsrud MA (2016) Modified Pechini synthesis of oxide powders and thin films. Handbook of sol-gel science and technology. Springer Int Pub. ​Cham, GermanyGoogle Scholar
  24. 24.
    Li Z, Chen Q, Chen X, Jin F, Wang X, Yang N, Zhang H (2018) Effect of Ca-doping on electrical properties of La0.46Sm0.21Sr0.33-xCaxMnO3 ceramics prepared by sol-gel technique. J Sol-Gel Sci Technol.  https://doi.org/10.1007/s10971-018-4735-6
  25. 25.
    Gaudon M, Laberty-Robert C, Ansart F, Stevens P, Rousset A (2002) Preparation and characterization of La1–xSrxMnO3+δ (0≤x≤0.6) powder by sol–gel processing. Solid State Sci.  https://doi.org/10.1016/S1293-2558(01)01208-0
  26. 26.
    Liu RS, Shen CH, Hu SF (2001) Chemical pressure controlled colossal magnetoresistance effects in La0.6(Sr0.4−xCax)MnO3. Int J Inorg Mater.  https://doi.org/10.1016/S1466-6049(01)00056-3
  27. 27.
    Palcut M, Wiik K, Grande T (2007) Cation self-diffusion and nonstoichiometry of lanthanum manganite studied by diffusion couple measurements. J Phys Chem C.  https://doi.org/10.1021/jp0642746
  28. 28.
    Hamad MA (2015) Theoretical work on effect of pressure on magnetocaloric properties of La0.7Ca0.3MnO3. Int J Thermophys.  https://doi.org/10.1007/S10765-015-1960-X
  29. 29.
    Messaoui I, Riahi K, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A, Hlil EK (2016). Phenomenological model of the magnetocaloric effect on Nd0.7Ca0.15Sr0.15MnO3 compound prepared by ball milling method. Ceram Int.  https://doi.org/10.1016/J.CERAMINT.2016.01.060
  30. 30.
    Mohamed AEA, Hernando B (2016) The expected low field magnetocaloric effect of La0.7Ba0.3MnO3 manganite at room temperature. Phys Lett A.  https://doi.org/10.1016/J.PHYSLETA.2016.03.007
  31. 31.
    Dhahri A, Jemmali M, Dhahri E, Valente MA (2015) Structural characterization, magnetic, magnetocaloric properties and phenomenological model in manganite La0.75Sr0.1Ca0.15MnO3 compound. J Alloys Compd.  https://doi.org/10.1016/J.JALLCOM.2015.01.314
  32. 32.
    Tlili R, Omri A, Bejar M, Dhahri E, Hlil EK (2015) Theoretical investigation of the magnetocaloric effect of La0.7(Ba,Sr)0.3MnO3 compound at room temperature with a second-order magnetic phase transition. Ceram Int.  https://doi.org/10.1016/J.CERAMINT.2015.04.165
  33. 33.
    Skini R, Khlifi M, Dhahri E, Hli EK (2017) Magnetocaloric-transport properties correlation in La0.8Ca0.2MnO3-doped manganites. J Supercond Nov Magn.  https://doi.org/10.1007/S10948-017-4139-9
  34. 34.
    Tlili R, Hammouda R, Bejar M, Dhahri E (2015) Theoretical investigation of the magnetocaloric effect on La0.7(Ba,Sr)0.3Mn0.9Ga0.1O3 compound at room temperature. J Magn Magn Mater.  https://doi.org/10.1016/J.JMMM.2015.03.037
  35. 35.
    Bonilla CM, Herrero-Albillos J, Bartolomé F, García LM, Parra-Borderías M, Franco V (2010) Universal behavior for magnetic entropy change in magnetocaloric materials: an analysis on the nature of phase transitions. Phys Rev B.  https://doi.org/10.1103/PHYSREVB.81.224424
  36. 36.
    Franco V, Conde A (2010) Scaling laws for the magnetocaloric effect in second-order phase transitions: from physics to applications for the characterization of materials. Int J Refrig.  https://doi.org/10.1016/J.IJREFRIG.2009.12.019
  37. 37.
    Franco V, Conde A, Kuz’min MD, Romero-Enrique JM (2009) The magnetocaloric effect in materials with a second order phase transition: are T C and T peak necessarily coincident? J Appl Phys.  https://doi.org/10.1063/1.3063666
  38. 38.
    Kong X, Zou Z (2018) Synthesis, characterization and study of magnetocaloric properties of La0.65Sr0.25K0.1Mn1−xVxO3. IOP Conf Ser Mater Sci Eng.  https://doi.org/10.1088/1757-899x/382/2/022058
  39. 39.
    R M’nassri (2016) Searching the conditions for a table-like shape of the magnetic entropy in the magnetocaloric LBMO2.98/LBMO2.95 composite. Eur Phys J Plus.  https://doi.org/10.1140/epjp/i2016-16392-y
  40. 40.
    Riahia K, Ezaami A, Messaoui I, Solzi M, Cheikhrouhou-Koubaa W, Cugini F, Allodib G, Rossi F, Cheikhrouhou A (2017) Investigation of the magnetic, electronic and magnetocaloric properties of La0.7(Ca,Sr)0.3Mn1−xGdxO3 manganites. J Magn Magn Mater.  https://doi.org/10.1016/J.JMMM.2017.06.091
  41. 41.
    Phan TL, Zhang YD, Zhang P, Thanh TD, Yu SC (2012) Critical behavior and magnetic-entropy change of orthorhombic La0.7Ca0.2Sr0.1MnO3. J Appl Phys.  https://doi.org/10.1063/1.4764097
  42. 42.
    Sfifira I, Ezaami A, Cheikhrouhou-Koubaaa W, Cheikhrouhou A (2017) Structural, magnetic and magnetocaloric properties in La0.7−xDyxSr0.3MnO3 manganites (x=0.00, 0.01 and 0.03). J Alloy Compd.  https://doi.org/10.1016/j.jallcom.2016.11.286

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. E. Salazar-Muñoz
    • 1
  • S. A. Palomares-Sánchez
    • 1
  • I. Betancourt
    • 2
  • T. J. Pérez-Juache
    • 3
  • V. D. Compeán-García
    • 4
  • A. Lobo Guerrero
    • 5
    Email author
  1. 1.Facultad de CienciasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Dpto. Materiales Metálicos y Cerámicos, Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoCDMXMexico
  3. 3.Escuela Nacional de Estudios SuperioresUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  4. 4.CONACyT—Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACYT)Universidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  5. 5.Área Académica de Ciencias de la Tierra y MaterialesUniversidad Autónoma del Estado de HidalgoHidalgoMexico

Personalised recommendations