Synthesis and photocatalytic performance of a novel hollow network Fe3O4/SiO2/meso-TiO2 (FSmT) composite microspheres

  • Qun-Yan LiEmail author
  • Haiwei Sun
  • Shibing Sun
  • Jun-Guo Liu
  • Su-Ping Cui
  • Zuo-Ren Nie
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


A novel hollow network magnetic Fe3O4/SiO2/meso-TiO2 (FSmT) composite microsphere photocatalyst, with network Fe3O4 nanorods as a magnetic layer, a dense SiO2 layer as an electronic barrier, and a mesoporous TiO2 as the active layer, was synthesized by sol–gel and hydrothermal process. The as-synthesized FSmT microspheres possess a high specific surface area (122 m2/g), a large mesoporous size (diameter = 5.47 nm), and pore volume (0.27 cm3/g). Further, the photocatalytic activity of the FSmT microspheres for methyl orange degradation was demonstrated and the degradation rate of methyl orange could reach up to 93.5% after 1 h under UV light. The good photocatalytic activity was attributed to the hollow network and mesoporous composite structures. The FSmT microspheres could be separated conveniently and well redispersed for further reuse because of their excellent magnetic property (Ms = 11.4 emu/g).

Schematic diagram for the photocatalytic reaction of methyl orange solution with the FSmT microspheres.


  • The hollow structure of the composite microspheres is a warehouse for methyl orange and the channel of mesoporous TiO2 is as a reactor for photocatalytic reaction.

  • The photocatalytic reaction with TiO2 began as methyl orange in warehouse entered the mesoporous channel.

  • As the reaction continues, more and more methyl oranges enter the pore canal and react successively until the end of the reaction.

  • Mesoporous titanium dioxide provides high specific surface area, and many photocatalytic reaction active sites for the photocatalytic reaction, it improves the photocatalytic efficiency by reducing the combination of the electron and the cavity so the composite microspheres possess high catalytic efficiency.


Hollow Mesoporous TiO2 Fe3O4 nanorods Photocatalytic performance 



We would like to thank the support of the National Key Research and Development Program of China (grant No. 2017YFC0703204).


  1. 1.
    Armor JN (2011) A history of industrial catalysis. Catal Today 163:3–9CrossRefGoogle Scholar
  2. 2.
    Badawy MI, Wahaab RA, El-Kalliny AS (2009) Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater. J Hazard Mater 167:567–574CrossRefGoogle Scholar
  3. 3.
    Cekic SD, Filik H, Apak R (2004) Use of an o-aminobenzoic acid-functionalized XAD-4 copolymer resin for the separation and preconcentration of heavy metal (II) ions. Anal Chim Acta 505:15–24CrossRefGoogle Scholar
  4. 4.
    Dai Q, Shi LY, Luo YG et al. (2002) Effects of templates on the structure, stability and photocatalytic activity of mesostructured TiO2. J Photochem Photobiol A 148:295–301CrossRefGoogle Scholar
  5. 5.
    Hu XL, Li GS, Yu JimmyC (2010) Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications Langmuir 26:3031–3039CrossRefGoogle Scholar
  6. 6.
    Murugan AV, Samuel V, Ravi V (2006) Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method. Mater Lett 60:479–480CrossRefGoogle Scholar
  7. 7.
    Augugliaro V, Caronna T, Loddo V, Marc G, Palmisano G, Palmisano L, Yurdakal S (2008) Oxidation of aromatic alcohols in irradiated aqueous suspensions of commercial and home-prepared rutile TiO(2): a selectivity study. Chem Eur J 14:4640–4646CrossRefGoogle Scholar
  8. 8.
    Lucaa D, Hsu LS (2003) Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of PLD Ti films. J Optoelectron Adv M 5:835–840Google Scholar
  9. 9.
    Addamo M, Augugliaro V, DiPaola A, Schiavello M et al. (2004) Preparation, characterization, and photoactivity of polycrystalline nanostructured TiO2 catalysts J Phys Chem B 108:3303–3310CrossRefGoogle Scholar
  10. 10.
    Banerjee S, Gopal J, Muraleedharan P et al. (2006) Physics and chemistry of photocatalytic titanium dioxide: visualization of bactericidal activity using atomic force microscopy. Curr Sci 90:1378–1383Google Scholar
  11. 11.
    Jensen GV, Bremholm M, Lock N et al. (2010) Anisotropic crystal growth kinetics of anatase TiO2 nanoparticles synthesized in a nonaqueous medium. Chem Mater 22:6044–39 6055CrossRefGoogle Scholar
  12. 12.
    Fan Y, Ma C, Li W et al. (2012) Synthesis and properties of Fe3O4/SiO2/TiO2 nanocomposites by hydrothermal synthetic method[J]. Mater Sci Semicon Proc 15:582–585CrossRefGoogle Scholar
  13. 13.
    Li ZQ, Wang HL, Zi LY et al. (2015) Preparation and photocatalytic performance of magnetic TiO2–Fe3O4/graphene (RGO) composites under VIS-light irradiation. Ceram Int 41:10634–10643CrossRefGoogle Scholar
  14. 14.
    Gradallah TA, Fujimura K, Kato S, Satokawa S et al. (2008) Preparation and characterization of magnetically separable photocatalyst (TiO2/SiO2/Fe3O4): effect of carbon coating calcination temperature. J Hazard Mater 154:572–577CrossRefGoogle Scholar
  15. 15.
    Lee SW, Drwiega J, Wu CY et al. (2004) Anatase TiO2 nanoparticle coating on barium ferrite using titanium bis-ammonium lactato dihydroxide and its use as a magnetic and photocatalyst. Chem Mater 16:1160–1164CrossRefGoogle Scholar
  16. 16.
    Xin T, Ma M, Zhang H et al. (2014) A facile approach for the synthesis of magnetic separable Fe3O4@TiO2, core–shell nanocomposites as highly recyclable photocatalysts. Appl Surf Sci 288(1):51–59CrossRefGoogle Scholar
  17. 17.
    He QH, Zhang ZX, Xiong JW et al. (2008) A novel biomaterial—FeO:TiO core–shell nano particle with magnetic performance and high visible light photocatalytic activity. Opt Mater 31:380–384CrossRefGoogle Scholar
  18. 18.
    Gao Y, Chen B, Li H et al. (2003) Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties. Mater Chem Phys 80:348–355CrossRefGoogle Scholar
  19. 19.
    Chang K, Mei Z, Wang T et al. (2014) MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 8:7078–7087CrossRefGoogle Scholar
  20. 20.
    Zha R, Nadimicherla R, Guo X (2015) Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions. J Mater Chem A 3:6565–6574CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Zhao Z, Chen J et al. (2015) C-doped hollow TiO2 spheres: in situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity. Appl Catal B 165:715–722CrossRefGoogle Scholar
  22. 22.
    Yu Q, Zhou C, Wang X (2008) Influence of plasma spraying parameter on microstructure and photocatalytic properties of nanostructured TiO2–Fe3O4 coating. J Mol Catal A:Chem 283:23–28CrossRefGoogle Scholar
  23. 23.
    Wang CX, Yin LW, Zhang LY et al. (2009) Magnetic (γ-Fe2O3@SiO2) n@TiO2 functional hybrid nanoparticles with active photocatalytic ability. J Phys Chem C 113:4008–4011CrossRefGoogle Scholar
  24. 24.
    Yuan Q, Nan L, Geng W et al. (2012) Preparation of magnetically recoverable Fe3O4@SiO2@Meso-TiO2 nanocomposites with enhanced photocatalytic ability. Mater Res Bull 47:2396–2402CrossRefGoogle Scholar
  25. 25.
    Zhang L, Xing Z, Zhang H et al. (2016) High thermostable ordered mesoporous SiO2–TiO2 coated circulating-bed biofilm reactor for unpredictable photocatalytic and biocatalytic performance. Appl Catal B 180:521–529CrossRefGoogle Scholar
  26. 26.
    Lu J, Wang M, Deng C et al. (2013) Facile synthesis of Fe3O4@mesoporous TiO2 microspheres for selective enrichment of phosphopeptides for phosphoproteomics analysis. Talanta 105:20–27CrossRefGoogle Scholar
  27. 27.
    Qiu P, Li W, Thokchom B et al. (2015) Uniform core–shell structured magnetic mesoporous TiO2 nanospheres as a highly efficient and stable sonocatalyst for the degradation of bisphenol-A. J Mater Chem A 3:6492–6500CrossRefGoogle Scholar
  28. 28.
    Zhang H, He X, Zhao W et al. (2017) Preparation of Fe3O4/TiO2 magnetic mesoporous composites for photocatalytic degradation of organic pollutants[J]. Water Sci Technol 75:1523CrossRefGoogle Scholar
  29. 29.
    Li QY, Ma KR, Zhou YL et al. (2017) Loading and release of Ibuprofen (IBU) in a novel network hollow magnetic mesoporous SiO2/Fe3O4, microspheres (HMMSs). J Sol–Gel Sci Technol 82:692–701CrossRefGoogle Scholar
  30. 30.
    Li QY, Wang PY, Zhou YL et al. (2016) A magnetic mesoporous SiO2/Fe3O4 hollow microsphere with a novel network-like composite shell: synthesis and application on laccase immobilization. J Sol–gel Sci Technol 8:523–530CrossRefGoogle Scholar
  31. 31.
    Li XH, Li QY, Zhu QQ et al. (2014) Study on pore size regulation and laccase immobilization of mesoporous SiO2/Fe3O4 hollow microspheres. J Synth Cryst 43:2958–2965Google Scholar
  32. 32.
    Wang MM, Li QY, Wei Q et al. (2012) Monodisperse mesoporous SiO2/Fe3O4/SiO2 microspheres: preparation and laccase immobilization. J Chem React Eng Technol 28:123–128Google Scholar
  33. 33.
    Li QY, Zhou YL, Ma KR et al. (2016) A mesoporous SiO2/dense SiO2/Fe3O4, multiply coated hollow microsphere: synthesis and application on papain immobilization. Colloids Surf A 511:239–246CrossRefGoogle Scholar
  34. 34.
    Xie LY, Li QY, Wang ZH et al. (2010) Preparation and characterization of SiO2/Fe3O4 mesoporous hollow microspheres. Chin J Inorg Chem 26:1756–1760Google Scholar
  35. 35.
    Shibata H, Ogura T, Mukai T et al. (2005) Direct synthesis of mesoporous titania particles having a crystalline wall. J Am Chem Soc 127:16396–16397CrossRefGoogle Scholar
  36. 36.
    Xing Z, Zhou W, Du F et al. (2014) Facile synthesis of hierarchical porous TiO(2) ceramics with enhanced photocatalytic performance for micropolluted pesticide degradation. ACS Appl Mater Interfaces 6:16653–16660CrossRefGoogle Scholar
  37. 37.
    Lu J, Wang M, Deng C et al. (2013) Facile synthesis of Fe3O4@mesoporous TiO2, microspheres for selective enrichment of phosphopeptides for phosphoproteomics analysis. Talanta 1:20–27CrossRefGoogle Scholar
  38. 38.
    Chen D, Cao L, Huang F et al. (2010) Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-23?nm) J. Am. Chem. Soc. 12:4438CrossRefGoogle Scholar
  39. 39.
    Gao Q, Chen FH, Zhang JL et al. (2009) The study of novel Fe3O4@γ–Fe2O3 core/shell nanomaterials with improved properties. J Magn Magn Mater 321:1052–1057CrossRefGoogle Scholar
  40. 40.
    Liu ZY, Quan X, Fu HB et al. (2004) Effect of embedded-silica on microstructure and photocatalytic activity of titania prepared by ultrasound-assisted hydrolysis. Appl Catal B 52:33–40CrossRefGoogle Scholar
  41. 41.
    Li J., Gao J, Zhang L et al (2014) Photocatalytic property of Fe3O4/SiO2/TiO2 core–shell nanoparticle with different functional layer thicknesses J. Nanomater. 2014:2Google Scholar
  42. 42.
    Jung KY, Park SB (2000) Enhanced photoactivity of silica-embedded titania particles prepared by sol–gel process for the decomposition of trichloroethylene. Appl Catal B 25:249–256CrossRefGoogle Scholar
  43. 43.
    Dong WY, Lee CW, Lu XC et al. (2010) Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO2–SiO2 nanocomposites generating excellent degradation activity of RhB dye. Appl Catal B 95:197–207CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Qun-Yan Li
    • 1
    Email author
  • Haiwei Sun
    • 1
  • Shibing Sun
    • 1
  • Jun-Guo Liu
    • 2
  • Su-Ping Cui
    • 1
  • Zuo-Ren Nie
    • 1
  1. 1.College of Materials Science and EngineeringBeijing University of TechnologyBeijingChina
  2. 2.College of Bioscience and BioengineeirngHebei University of Science and TechnologyShijiazhuangChina

Personalised recommendations