Journal of Sol-Gel Science and Technology

, Volume 89, Issue 2, pp 586–593 | Cite as

Solution combustion synthesis of ZnO powders using various surfactants as fuel

  • H. Vahdat Vasei
  • S. M. MasoudpanahEmail author
  • M. Adeli
  • M. R. Aboutalebi
Original Paper: Sol–gel and hybrid materials for catalytic, photoelectrochemical and sensor applications


Single phase ZnO powders were synthesized by solution combustion method using various surfactants as fuel. The effects of hydrocarbon tail length on the combustion behavior, phase evolution, morphology, optical properties, and photocatalytic activity were studied by thermal analysis, X-ray diffraction, electron microscopy, and photoluminescence spectroscopy techniques. The specific surface area and pore volume increased with the addition of citric acid as auxiliary fuel due to the increase of released gaseous products. ZnO powders obtained by mixed fuels show higher crystallinity and specific surface area, leading to the higher photodegradation of methylene blue under ultraviolet irradiation. Moreover, the photocatalytic activity increased in the presence of ZnO powders prepared by the longest hydrocarbon tail.


  • Different surfactants used as fuel in solution combustion synthesis of ZnO powders.

  • Specific surface area increased by using the surfactants with shortest hydrocarbon tail.

  • Photocatalytic activity increased with addition of citric acid as auxiliary fuel.


ZnO Porous materials Surfactant Photocatalytic activity 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Solution combustion synthesis of nanoscale materials. Chem Rev 116:14493–14586CrossRefGoogle Scholar
  2. 2.
    Wen W, Wu J-M (2014) Nanomaterials via solution combustion synthesis: a step nearer to controllability. RSC Adv 4:58090–58100CrossRefGoogle Scholar
  3. 3.
    Li F-t, Ran J, Jaroniec M, Qiao SZ (2015) Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale 7:17590–17610CrossRefGoogle Scholar
  4. 4.
    Nersisyan HH, Lee JH, Ding J-R, Kim K-S, Manukyan KV, Mukasyan AS (2017) Combustion synthesis of zero-, one-, two- and three-dimensional nanostructures: Current trends and future perspectives. Progress Energy Combust Sci 63:79–118CrossRefGoogle Scholar
  5. 5.
    Deganello F, Tyagi AK (2018) Solution combustion synthesis, energy and environment: best parameters for better materials. Progress Cryst Growth Charact Mater 64:23–61CrossRefGoogle Scholar
  6. 6.
    Patil KC, Hegde MS, Rattan T, Aruna ST (2008) Chemistry of Nanocrystalline Oxide Materials (Combustion Synthesis, Properties, and Applications). World Scientific Publishing Co, SingaporeCrossRefGoogle Scholar
  7. 7.
    Fathi H, Masoudpanah SM, Alamolhoda S, Parnianfar H (2017) Effect of fuel type on the microstructure and magnetic properties of solution combusted Fe3O4 powders. Ceram Int 43:7448–7453CrossRefGoogle Scholar
  8. 8.
    Naderi P, Masoudpanah SM, Alamolhoda S (2017) Magnetic properties of Li0.5Fe2.5O4 nanoparticles synthesized by solution combustion method. Appl Phys A 123:702CrossRefGoogle Scholar
  9. 9.
    Parnianfar H, Masoudpanah SM, Alamolhoda S, Fathi H (2017) Mixture of fuels for solution combustion synthesis of porous Fe3O4 powders. J Magn Magn Mater 432:24–29CrossRefGoogle Scholar
  10. 10.
    Pourgolmohammad B, Masoudpanah SM, Aboutalebi MR (2017) Effects of the fuel type and fuel content on the specific surface area and magnetic properties of solution combusted CoFe2O4 nanoparticles. Ceram Int 43:8262–8268CrossRefGoogle Scholar
  11. 11.
    Vasei HV, Masoudpanah SM, Adeli M, Aboutalebi MR (2018) Solution combustion synthesis of ZnO powders using CTAB as fuel. Ceram Int 44:7741–7745CrossRefGoogle Scholar
  12. 12.
    Makhlouf MT, Abu-Zied BM, Mansoure TH (2014) Effect of fuel/oxidizer ratio and the calcination temperature on the preparation of microporous-nanostructured tricobalt tetraoxide. Adv Powder Technol 25:560–566CrossRefGoogle Scholar
  13. 13.
    García Pérez UM, Sepúlveda-Guzmán S, Martínez-dela Cruz A, Ortiz Méndez U (2011) Photocatalytic activity of BiVO4 nanospheres obtained by solution combustion synthesis using sodium carboxymethylcellulose. J Mol Catal A: Chem 335:169–175CrossRefGoogle Scholar
  14. 14.
    Famenin Nezhad Hamedani S, Masoudpanah SM, Bafghi M. Sh, Asgharinezhad Baloochi N (2018) Solution combustion synthesis of CoFe2O4 powders using mixture of CTAB and glycine fuels. J Sol-Gel Sci Technol 86:743–750Google Scholar
  15. 15.
    Hadadian S, Masoudpanah SM, Alamolhoda S (2018) Solution combustion synthesis of Fe3O4 powders using mixture of CTAB and citric acid fuels. J Supercond Nov Magn. In pressGoogle Scholar
  16. 16.
    Prabhu YT, Rao KV, Kumar VSS, Kumari BS (2013) Synthesis of ZnO nanoparticles by a novel surfactant assisted amine combustion method. Advances in Nanoparticles 2(1):45–50CrossRefGoogle Scholar
  17. 17.
    Huang J, Wu Y, Gu C, Zhai M, Yu K, Yang M, Liu J (2010) Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property. Sens Actuators B: Chem 146:206–212CrossRefGoogle Scholar
  18. 18.
    Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899CrossRefGoogle Scholar
  19. 19.
    Jeong I-S, Kim JH, Im S (2003) Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure. Appl Phys Lett 83:2946–2948CrossRefGoogle Scholar
  20. 20.
    Jain SR, Adiga KC, Verneker VRPai (1981) A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust Flame 40:71–79CrossRefGoogle Scholar
  21. 21.
    Kalantari Bolaghi Z, Hasheminiasari M, Masoudpanah SM (2018) Solution combustion synthesis of ZnO powders using mixture of fuels in closed system. Ceram Int 44:12684–12690CrossRefGoogle Scholar
  22. 22.
    Goworek J, Kierys A, Gac W, Borówka A, Kusak R (2009) Thermal degradation of CTAB in as-synthesized MCM-41. J Therm Anal Calorim 96:375–382CrossRefGoogle Scholar
  23. 23.
    Ischenko V, Polarz S, Grote D, Stavarache V, Fink K, Driess M (2005) Zinc oxide nanoparticles with defects. Adv Funct Mater 15:1945–1954CrossRefGoogle Scholar
  24. 24.
    Pathak TK, Kumar A, Swart CW, Swart HC, Kroon RE (2016) Effect of fuel content on luminescence and antibacterial properties of zinc oxide nanocrystalline powders synthesized by the combustion method. RSC Adv 6:97770–97782CrossRefGoogle Scholar
  25. 25.
    Potti PR, Srivastava VC (2012) Comparative studies on structural, optical, and textural properties of combustion derived ZnO prepared using various fuels and their photocatalytic activity. Ind Eng Chem Res 51:7948–7956CrossRefGoogle Scholar
  26. 26.
    Z Kalantari Bolaghi, SM Masoudpanah, M.J.J.o.S.-G.S (2018) Hasheminiasari, technology, photocatalytic properties of ZnO powders synthesized by conventional and microwave-assisted solution combustion method. Ceramics International 86: 711–718Google Scholar
  27. 27.
    KSW Sing, DH Everett, RAW Haul, L Moscou, RA Pierotti, J Rouquerol, T Siemieniewska, Reporting Physisorption Data for Gas/Solid Systems, Handbook of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA 2008Google Scholar
  28. 28.
    Xu L, Gu F, Su J, Chen Y, Li X, Wang X (2011) The evolution behavior of structures and photoluminescence of K-doped ZnO thin films under different annealing temperatures. J Alloy Compd 509:2942–2947CrossRefGoogle Scholar
  29. 29.
    Hamby DW, Lucca DA, Klopfstein MJ, Cantwell G (2003) Temperature dependent exciton photoluminescence of bulk ZnO. Journal of Applied Physics 93:3214–3217CrossRefGoogle Scholar
  30. 30.
    Zhang R, Yin P-G, Wang N, Guo L (2009) Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci 11:865–869CrossRefGoogle Scholar
  31. 31.
    Zeng H, Duan G, Li Y, Yang S, Xu X, Cai W (2010) Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv Funct Mater 20:561–572CrossRefGoogle Scholar
  32. 32.
    Klubnuan S, Suwanboon S, Amornpitoksuk P (2016) Effects of optical band gap energy, band tail energy and particle shape on photocatalytic activities of different ZnO nanostructures prepared by a hydrothermal method. Opt Mater 53:134–141CrossRefGoogle Scholar
  33. 33.
    Zheng W, Ding R, Yan X, He G (2017) PEG induced tunable morphology and band gap of ZnO. Mater Lett 201:85–88CrossRefGoogle Scholar
  34. 34.
    Li X-H, Xu J-Y, Jin M, Shen H, Li X-M (2006) Electrical and optical properties of bulk ZnO single crystal grown by flux bridgman method. Chin Phys Lett 23:3356CrossRefGoogle Scholar
  35. 35.
    Nagaraju G, Shivaraju GC, Banuprakash G, Rangappa D (2017) Photocatalytic activity of ZnO nanoparticles: synthesis via solution combustion method. Mater Today: Proc 4:11700–11705CrossRefGoogle Scholar
  36. 36.
    Ren H, Koshy P, Chen W-F, Qi S, Sorrell CC (2017) Photocatalytic materials and technologies for air purification. J Hazard Mater 325:340–366CrossRefGoogle Scholar
  37. 37.
    Yusoff N, Ho L-N, Ong S-A, Wong Y-S, Khalik W (2016) Photocatalytic activity of zinc oxide (ZnO) synthesized through different methods. Desalin Water Treat 57:12496–12507CrossRefGoogle Scholar
  38. 38.
    Tripathy N, Ahmad R, Kuk H, Hahn Y-B, Khang G (2016) Mesoporous ZnO nanoclusters as an ultra-active photocatalyst. Ceram Int 42:9519–9526CrossRefGoogle Scholar
  39. 39.
    Priyanka VCSrivastava (2013) Photocatalytic oxidation of dye bearing wastewater by iron doped zinc oxide. Ind Eng Chem Res 52:17790–17799CrossRefGoogle Scholar
  40. 40.
    Fresno F, Portela R, Suárez S, Coronado JM (2014) Photocatalytic materials: recent achievements and near future trends. J Mater Chem A 2:2863–2884CrossRefGoogle Scholar
  41. 41.
    Kazeminezhad I, Sadollahkhani A (2016) Influence of pH on the photocatalytic activity of ZnO nanoparticles. J Mater Sci: Mater Electron 27:4206–4215Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • H. Vahdat Vasei
    • 1
  • S. M. Masoudpanah
    • 1
    Email author
  • M. Adeli
    • 1
  • M. R. Aboutalebi
    • 1
  1. 1.School of Metallurgy & Materials EngineeringIran University of Science and Technology (IUST)TehranIran

Personalised recommendations