Advertisement

Effect of molar concentration on physical properties of spraydeposited SnO2 thin films using nebulizer

  • S. Palanichamy
  • J. Raj Mohamed
  • K. Deva Arun Kumar
  • M. Anitha
  • S. Pandiarajan
  • L. Amalraj
Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • 10 Downloads

Abstract

In the present paper, tin dioxide (SnO2) thin films had been fabricated with different precursor concentration in the range of 0.01–0.09 M onto amorphous glass substrates utilizing nebulizer spray method. The effect of precursor concentration on electrical, morphological, structural, optical, and photoluminescence properties has been investigated. XRD spectrum revealed that the polycrystalline nature of SnO2 thin films with tetragonal structure in the range of precursor concentration 0.03–0.09 M, which are having a favorable growth orientation along (110) direction. The estimated average crystallite size varied between 22 and 53 nm. UV-Visible spectrum exposes the transmittance of SnO2 thin films lies between 90 and 78% in the visible range. The direct band gap energy reduced from 3.83 to 3.71 eV on increasing precursor concentration upto 0.07 M and then it was further increased. Photoluminescence spectra at room temperature exhibited a strong peak at 362 nm with shoulder peak at 376 nm and two broad peaks are 493 nm and 518 nm. SEM analysis illustrated that the polyhedron-like grains were homogeneously arranged over the film surface. The film prepared at 0.07 M precursor concentration shows the least resistivity 2.41 × 10−3 Ω-cm and good figure of merit 16.41 × 10−3 (Ω/sq)−1.

Highlights

  • SnO2 thin films were deposited with different precursor concentration (0.01–0.09 M) using nebulized spray pyrolysis (NSP) technique.

  • Crystallite size in the range of 22–53 nm.

  • Transmittance decreased from 90 to 78% in the visible region.

  • Minimum electrical resistivity 2.41 × 10−3 Ω-cm obtained at 0.07 M precursor concentration.

  • Highest figure of merit is found to be 16.41 × 10−3 (Ω/sq)−1.

Keywords

NSP Tin dioxide Optical Electrical measurements 

Notes

Acknowledgements

We are thankful to Dr. R. Ramesh Babu, Assistant Professor, Department of Physics, Bharathidasan University, Tiruchirappalli, India for analyzing the electrical characterization using Hall measurement instrument.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Godbole VP, Vispute RD, Chaudhari SM, Kanetkar SM, Ogale SB (1990) J Mater Res 5:372–377CrossRefGoogle Scholar
  2. 2.
    Phillips HM, Li Y, Bi Z, Zhang B (1996) Appl Phys A 63:347–351CrossRefGoogle Scholar
  3. 3.
    Dolbec R, El Khakani MA, Serventi AM, Trudeau M, Saint-Jacques RG (2002) Thin Solid Films 419:230–236CrossRefGoogle Scholar
  4. 4.
    Bagheri-Mohagheghi MM, Shokooh-Saremi M (2010) Phys B Condens Matter 405:4205–4210CrossRefGoogle Scholar
  5. 5.
    Park JH, Lee JH (2009) Sens Actuators B 136:151–157CrossRefGoogle Scholar
  6. 6.
    Pusawale SN, Deshmukh PR, Lokhande CD (2011) Appl Surf Sci 257:9498–9502CrossRefGoogle Scholar
  7. 7.
    Zhang Y, Liu Y (2006) Chem Mater 18:4643–4646CrossRefGoogle Scholar
  8. 8.
    Vaufrey D, Ben khalifa M, Besland MP, Sandu C, Balanchin MG, Teodorescu V (2002) Synth Met 127:207–211CrossRefGoogle Scholar
  9. 9.
    Zaouk D, Zaatar Y, Khoury A, Llinares C, Charles JP, Bechara J (2000) Microelectron Eng 51-52:627–631CrossRefGoogle Scholar
  10. 10.
    Kumar KDA, Valanarasu S, Kathalingam A, Jeyadheepan K (2018) Mater Res Bull 101:264–271CrossRefGoogle Scholar
  11. 11.
    Seo J, Kim GW, Sung CH, Anwar MS, Lee CG, Koo BH (2011) Curr Appl Phys 11:S310–S313CrossRefGoogle Scholar
  12. 12.
    Ebrahimiasl S, Yunus WMZW, Kassim A, Zainal Z (2011) Sensors 11:9207–9216CrossRefGoogle Scholar
  13. 13.
    Zdenek M, Remes, Vanecek HM, Yates P, Evans DW (2009) Thin Solid Films 517:6287–6289CrossRefGoogle Scholar
  14. 14.
    Gnanam S, Rajendran V (2010) J Sol-Gel Sci Tech 56:128–133CrossRefGoogle Scholar
  15. 15.
    Boyali E, Baran V, Asar T, Ozcelik S, Kasap M (2017) J Alloy Compd 692:119–123CrossRefGoogle Scholar
  16. 16.
    Anitha N, Anitha M, Saravanakumar K, Valanarasu S (2018) J Phys Chem Solids 119:9–18CrossRefGoogle Scholar
  17. 17.
    Anitha M, Amalraj L, Anitha N (2017) Appl Phys A 123:764CrossRefGoogle Scholar
  18. 18.
    Thirumoorthi M, Prakash JTJ (2016) Superlattices Microstruct 89:378–389CrossRefGoogle Scholar
  19. 19.
    Chiad SS, Oboudi SF, Mohamed GH, Habubi NF (2014) PCAIJ 9(6):189–194Google Scholar
  20. 20.
    Abdelkrim A, Rahmane S, Abdelouahab O, Abdelmalek N, Brahim G (2016) Optik 127:2653–2658CrossRefGoogle Scholar
  21. 21.
    Mariappan R, Ponnuswamy V, Suresh P (2013) Mater Sci Semicond Process 16:825–832CrossRefGoogle Scholar
  22. 22.
    Kumar KDA, Valanarasu S, Tamilnayagam V, Amalraj L (2017) J Mater Sci Mater Electron 28:14209–14216CrossRefGoogle Scholar
  23. 23.
    Sankar C, Ponnuswamy V, Manickam M, Mariappan R, Suresh R (2015) Appl Surface Sci 349:931–939CrossRefGoogle Scholar
  24. 24.
    Perednis D, Gauckler LJ (2005) J Elect Ceram 14(2):103–111Google Scholar
  25. 25.
    Lokhande BJ, Patil PS, Uplane MD (2004) Mater Chem Phys 84:238–242CrossRefGoogle Scholar
  26. 26.
    Benhaoua B, Abbas S, Rahal A, Benhaoua A, Aida MS (2015) Superlattices Microstruct 83:78–88CrossRefGoogle Scholar
  27. 27.
    Sakhare RD, Khuspe GD, Navale ST, Mulik RN, Chougule MA, Pawar RC, Lee CS, Shashwati Sen, Patil VB (2013) J Alloy Compd 563:300–306CrossRefGoogle Scholar
  28. 28.
    Patil LA, Suryawanshi DN, Pathan IG, Patil DG (2013) Bull Mater Sci 36(7):1153–1160CrossRefGoogle Scholar
  29. 29.
    Turgut G, Keskenler EF, Aydın S, Sonmez E, Dog˘an S, Duzgun B, Ertug˘rul M (2010) Superlattices Microstruct 56:107–116CrossRefGoogle Scholar
  30. 30.
    Paloly A R, Satheesh M, Carmen Martinez-Tomas M, Munoz- Sanjose V, Achary S R, Junaid Bushiri M (2015) Appl Surf Sci 357:915–921CrossRefGoogle Scholar
  31. 31.
    Rahal A, Benhaoua A, Jlassi M, Benhaoua B (2015) Superlattices Microstruct 86:403–411CrossRefGoogle Scholar
  32. 32.
    Suresh R, Ponnuswamy V, Mariappan R, Senthilkumar N (2014) Ceram Int 40:437–445CrossRefGoogle Scholar
  33. 33.
    Mariappan R, Ponnuswamy V, Suresh P, Ashok N, jayamurugan P, Chandra Bose A (2014) Superlattices Microstruct 71:238–249CrossRefGoogle Scholar
  34. 34.
    Raj Mohamed J, Sanjeeviraja C, Amalraj L (2016) J Mater Sci Mater Electron 27:4437–4446CrossRefGoogle Scholar
  35. 35.
    Khelifi Chafia, Attaf Abdallah, Saidi Hanane, Yahia Anouar, Dahnoun Mohamed, Saadi Abdelhakim (2016) Optik 127:11055–11062CrossRefGoogle Scholar
  36. 36.
    Lu YM, Jiang J, Xia C, Kramm B, Polity A, He YB, Klar PJ, Meyer BK (2015) Thin Solid Films 594:270–276CrossRefGoogle Scholar
  37. 37.
    Mrabet C, Boukhachem A, Amlouk M, Manoubi T (2016) J Alloy Compd 666:392–405CrossRefGoogle Scholar
  38. 38.
    Kumar KDA, Valanarasu S, Ganesh V, Shkir Mohd, AlFaify, Algarni H (2018) J Mater Res 33:1523–1533CrossRefGoogle Scholar
  39. 39.
    Kumar KDA, Ganesh V, Valanarasu S, Shkir M, Kulandaisamy I, Kathalingam A, AlFaify S (2018) Mater Chem Phys 212:167–174CrossRefGoogle Scholar
  40. 40.
    Jeong J, Choi SP, Chang CI, Shin DC, Park JS, Lee BT, Park YJ, Song HJ (2003) Solid State Commun 127:595–597CrossRefGoogle Scholar
  41. 41.
    Mariammal RN, Rajamanickam N, Ramachandran K (2011) J Nano-Electron Phys 3:92–100Google Scholar
  42. 42.
    Mitra A, Thareja RK (2001) J Appl Phys 89:2025–2028CrossRefGoogle Scholar
  43. 43.
    Babar AR, Shinde SS, Moholkar AV, Bhosale CH, Kim JH, Rajpure KY (2011) J Alloy Compd 509:3108–3115CrossRefGoogle Scholar
  44. 44.
    Ergin B, Ketenci E, Atay F (2009) Int J Hydrog Energy 34:5249–5254CrossRefGoogle Scholar
  45. 45.
    Tran Q-P, Fang J-S, Chin T-S (2015) Mater Sci Semicond Process 40:664–669CrossRefGoogle Scholar
  46. 46.
    Deepu DR, Sudha Kartha C, Vijayakumar KP (2016) J Anal Appl Pyrolysis 121:24–28CrossRefGoogle Scholar
  47. 47.
    Prathap P, Subbaiah YPV, Ramakrishna Reddy KT (2007) J Phys D Appl Phys 40:5275–5282CrossRefGoogle Scholar
  48. 48.
    Anand V, Sakthivelu A, Kumar KDA, Valanarasu S, Kathalingam A, Ganesh V, Shkire M, AlFaify S (2018) I S Yahia Ceram Inter 44:6730–6738CrossRefGoogle Scholar
  49. 49.
    Devika M, Koteeswara Reddy N, Ramesh K, Gunasekhar KR, Gopal ESR, Reddy KTR (2006) Semicond Sci Technol 21:1125–1131CrossRefGoogle Scholar
  50. 50.
    Kumar KDA, Valanarasu S, Jeyadheepan K, Kim H-S, Vikraman D (2018) J Mater Sci Mater Electron 29:3648–3656CrossRefGoogle Scholar
  51. 51.
    Joshi BN, Yoon H, Yoon SS (2013) J Electro 71:48–52CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Palanichamy
    • 1
  • J. Raj Mohamed
    • 2
  • K. Deva Arun Kumar
    • 3
  • M. Anitha
    • 1
  • S. Pandiarajan
    • 4
  • L. Amalraj
    • 1
  1. 1.Research Department of PhysicsV.H.N.S.N. CollegeVirudhunagarIndia
  2. 2.Research Department of PhysicsH.H. The Rajah’s CollegePudukkottaiIndia
  3. 3.Department of PhysicsArul Anandar CollegeKarumathurIndia
  4. 4.Department of PhysicsDevanga Arts CollegeAruppukottaiIndia

Personalised recommendations