Efficient peptide based gelators for aromatic organic solvents and vegetable oils: application in phase selective gelation and dye entrapment

  • Siddhartha Guchhait
  • Sumita RoyEmail author
Original Paper: Supramolecular materials


The examples of organogel in vegetable oil are limited and the illustration of single amphiphile showing organogel in a lot of vegetable oils are rare. Hence, invention of a new type of amphiphile capable to gelate different vegetable oils are demanding and challenging aspect to us. In this article, we have synthesized two peptide based low molecular weight organic gelators, [11-(2-tert-Butoxycarbonylamino-3-methyl-butyrylamino)-undecanoylamino]-acetic acid (TBMBUA) and [11-(2-tert-Butoxycarbonylamino-3-methyl-pentanoylamino)-undecanoylamino]-acetic acid (TBMPUA) and have demonstrated their excellent gelation ability towards a number of aromatic organic solvents and different edible vegetable oils. FT-IR and temperature dependence 1H-NMR spectroscopy studies confirmed that hydrogen bonding interaction among the amide linkages plays significant role for formation of gel in organic solvents. XRD and FT-IR measurements suggested anti-parallel beta sheet arrangement between the peptide chains in the self-assembled state. The study revealed that the synthesized amphiphile TBMBUA is a good phase selective gelator of aromatic organic solvents in water-solvent mixture and both the gelators are able to entrap toxic dyes from aqueous dye solution. Hence the gelators can be successfully utilized to remove the toxic aromatic organic solvents and toxic dyes present in waste water which is one of the serious problems in recent years.


  • Single chain peptide-based efficient gelators of aromatic organic solvent and vegetable oil.

  • Intermolecular H-bonding interactions are responsible for formation stable plate-like aggregates.

  • Phase selector of toxic aromatic organic solvents.

  • Cationic toxic dye remover present in aqueous solution.


Amphiphile Phase selective gelator Dye entrapment Hydrogen bonding 



SG acknowledges UGC [22/06/2014(i) EU-V] for his fellowship. Departmental instrumental facility of DST FIST and UGC SAP program is acknowledged. We would like to acknowledge the University Scientific Instrumentation Centre (USIC), Vidyasagar University, and Indian Institute of Technology, Kharagpur, for providing instrumental facilities. The assistance of Dr. Sagar Pal, Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad-826004, India, for rheology measurement is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2018_4875_MOESM1_ESM.doc (3 mb)
Supplementary Information


  1. 1.
    Vintiloiu A, Leroux JC (2008) J Control Release 125:179–192CrossRefGoogle Scholar
  2. 2.
    Sagiri SS, Behera BR, Rafanan R, Bhattacharya C, Pal K, Banerjee I, Rousseau D (2014) Soft Mater 12:47–72CrossRefGoogle Scholar
  3. 3.
    Kar T, Debnath S, Das D, Shome A, Das PK (2009) Langmuir 25:8639–8648CrossRefGoogle Scholar
  4. 4.
    Skilling KJ, Citossi F, Bradshaw TD, Ashford M, Kellama B, Marlow M (2014) Soft Matter 10:237–256CrossRefGoogle Scholar
  5. 5.
    Cametti M, Dzolic Z (2014) Chem Commun 50:8273–8286CrossRefGoogle Scholar
  6. 6.
    Prathap A, Sureshan KM (2012) Chem Commun 48:5250–5252CrossRefGoogle Scholar
  7. 7.
    Xue M, Gao D, Liu K, Peng J, Fang Y (2009) Tetrahedron 65:3369–3377CrossRefGoogle Scholar
  8. 8.
    Trivedi DR, Ballabh A, Dastidar P (2003) Chem Mater 15:3971–3973CrossRefGoogle Scholar
  9. 9.
    Felip-Leon C, Díaz-Oltra S, Galindo F, Chameleonic JFM (2016) Chem Mater 28:7964–7972CrossRefGoogle Scholar
  10. 10.
    Wilder EA, Wilson KS, Quinn JB, Skrtic D, Antonucci JM (2005) Chem Mater 17:2946–2952CrossRefGoogle Scholar
  11. 11.
    Kar T, Mukherjee S, Das PK (2014) New J Chem 38:1158–1167CrossRefGoogle Scholar
  12. 12.
    Das Mahapatra R, Dey J (2015) Langmuir 31:8703–8709CrossRefGoogle Scholar
  13. 13.
    Sangeetha NM, Maitra U (2005) Chem Soc Rev 34:821–836CrossRefGoogle Scholar
  14. 14.
    Ajayaghosh A, George SJ (2001) J Am Chem Soc 123:5148–5149CrossRefGoogle Scholar
  15. 15.
    Abdallah DJ, Weiss RG (2000) Adv Mater 12:1237–1247CrossRefGoogle Scholar
  16. 16.
    Lehn JM (1990) Angew Chem Int Ed 29:1304–1319CrossRefGoogle Scholar
  17. 17.
    Lehn JM (1995) Supramolecular Chemistry: Concepts and Perspectives. VCH, Weinheim, GermanyCrossRefGoogle Scholar
  18. 18.
    George M, Weiss GR (2006) Acc Chem Res 39:489–497CrossRefGoogle Scholar
  19. 19.
    Terech P, Weiss RG (1997) Chem Rev 97:3133–3160CrossRefGoogle Scholar
  20. 20.
    Noponen V, Valkonen A, Lahtinen M, Salo H, Sievänen E (2013) Supramol Chem 25:133–145CrossRefGoogle Scholar
  21. 21.
    D’Aléo A, Pozzo JL, Fages F, Schmutz M, Mieden-Gundert G, Vögtle F, Caplard V, Zinic M (2004) Chem. Commun. 190–191Google Scholar
  22. 22.
    Llansola RF, Escuder B, Miravet JF (2009) J Am Chem Soc 131:11478–11484CrossRefGoogle Scholar
  23. 23.
    Hanabma K, Tanaka R, Suzuki M, Kimura M, Shirai H (1997) Adv Mater 9:1095–1097CrossRefGoogle Scholar
  24. 24.
    Yu X, Zhang P, Li Y, Chen L, Yi T, Ma Z (2015) Cryst Eng Comm 17:8039–8046CrossRefGoogle Scholar
  25. 25.
    Maity I, Parmar HS, Rasale DB, Das AK (2014) J Mater Chem B 2:5272–5279CrossRefGoogle Scholar
  26. 26.
    Rogers MA, Wright AJ, Marangoni AG (2009) Soft Matter 5:1594–1596CrossRefGoogle Scholar
  27. 27.
    Fayazl G, HosseinGoli SA, Kadivar MA (2017) J Am Oil Chem Soc 94:47–55CrossRefGoogle Scholar
  28. 28.
    Toro-Vazquez JF, Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso M, Alonzo-Macias M, González-Chávez MM (2007) J Am Oil ChemSoc 84:989–1000CrossRefGoogle Scholar
  29. 29.
    Satapathy D, Biswas D, Behera B, Sagiri SS, Pal K, Pramanik K (2013) J Appl Polym Sci 129:585–594CrossRefGoogle Scholar
  30. 30.
    Barbosa Rocha JC, Lopes DJ, NucciMascarenhas MC, Arellano DB, Ricardo Guerreiro LM, Lopes da Cunha R (2013) Food Res Int 50:318–323CrossRefGoogle Scholar
  31. 31.
    Zetzl AK, Marangoni AG, Barbut S (2012) Food Funct 3:327–337CrossRefGoogle Scholar
  32. 32.
    Co E, Marangoni AG (2013) J Am Oil Chem Soc 90:529–544CrossRefGoogle Scholar
  33. 33.
    Motulskya A, Lafleurb M, Couffin-Hoaraua AC, Hoarauc D, Bouryd F, Benoitd JP, Lerouxa JC (2005) Biomaterials 26:6242–6253CrossRefGoogle Scholar
  34. 34.
    Vintiloiu A, Lafleur M, Bastiat G, Leroux JC (2008) Pharm Res 25:845–852CrossRefGoogle Scholar
  35. 35.
    Bastit G, Plourde F, Motulsky A, Furtos A, Dumont Y, Quirion R, Fuhrmann G, Leroux JC (2010) Biomaterials 31:6031–6038CrossRefGoogle Scholar
  36. 36.
    Lukyanova L, Franceschi-Messant S, Vicendo P, Perez E, Rico-Lattes I, Weinkamer R (2010) Colloids Surf B 79:105–112CrossRefGoogle Scholar
  37. 37.
    Iwanaga K, Sumizawa T, Miyazaki M, Kakemi M (2010) Int J Pharm 388:123–128CrossRefGoogle Scholar
  38. 38.
    Khupe M, Khupukonoweshuro B, Kazlauciunas A, Thotnton PD (2015) Soft Matter 11:9160–9167CrossRefGoogle Scholar
  39. 39.
    Gallon G, Lapinte V, Robin JJ, Chopineau J, Devoisselle JM, Aubert-Pouessel A (2017) ACS Sustain Chem Eng 5:4311–4319CrossRefGoogle Scholar
  40. 40.
    Bhattacharya S, Krishnan-Ghosh Y (2001) Chem Commun 50:185–186CrossRefGoogle Scholar
  41. 41.
    Jadhav RS, Vemula PK, Kumar P, Raghavan SR, John G (2010) Angew Chem Int Ed 49:7695–7698CrossRefGoogle Scholar
  42. 42.
    Basak S, Nanda J, Banerjee A (2012) J Mater Chem 22:11658–11664CrossRefGoogle Scholar
  43. 43.
    Mukherjee S, Shang C, Chen X, Chang X, Liu K, Yu C, Fang Y (2014) Chem Commun 50:13940–13943CrossRefGoogle Scholar
  44. 44.
    Zhang Y, Ma Y, Deng M, Shang H, Liang C, Jiang S (2015) Soft Matter 11:5095–5100CrossRefGoogle Scholar
  45. 45.
    Li D, Li Q, Bai N, Dong H, Mao D (2017) ACS Sustain Chem Eng 5:5598–5607CrossRefGoogle Scholar
  46. 46.
    Arslan I, Balcioǧlu IA, Bahnemann DW (2000) Dyes Pigments 47:207–218CrossRefGoogle Scholar
  47. 47.
    Liu N, Zhang Q, Qu R, Zhang W, Li H, Wei Y, Fen L (2017) Langmuir 33:7380–7388CrossRefGoogle Scholar
  48. 48.
    Daneshva N, Khataee AR, Rasoulifard MH, Pourhassan (2007) J Hazard Mater 143:214–219CrossRefGoogle Scholar
  49. 49.
    Lachheb H, Puzenat E, Ksibi M, Houas A, Elaloui E, Guillard C, Herrmann JM (2002) Appl Catal B 39:75–90CrossRefGoogle Scholar
  50. 50.
    ZhuangX WanY, Feng C, ShenY ZhaoD (2009) Chem Mater 21:706–716CrossRefGoogle Scholar
  51. 51.
    Dou X, Li P, Zhang D, Feng CL (2012) Soft Matter 8:3231–3238CrossRefGoogle Scholar
  52. 52.
    Roy A, Maiti M, Nayak RR, Roy S (2013) J Mater Chem B 1:5588–5601CrossRefGoogle Scholar
  53. 53.
    Roy S, Maiti M, RoyA (2017) Chem Sel 2:6929–6939Google Scholar
  54. 54.
    Roy A, Maiti M, Roy S (2014) Colloids Surf A 461:76–84CrossRefGoogle Scholar
  55. 55.
    Palui G, Garai A, Nanda J, Nandi AK, Banerjee A (2010) J Phys Chem B 114:1249–1256CrossRefGoogle Scholar
  56. 56.
    Pal A, Dey J (2011) Soft Matter 7:10369–10376CrossRefGoogle Scholar
  57. 57.
    Nikiforidis CV, Gilbert EP, Scholten E (2015) RSC Adv 5:47466–47475CrossRefGoogle Scholar
  58. 58.
    Roy A, Roy S, Pradhan A, Maiti Choudhury S, Nayak RR (2018) Ind Eng Chem Res 57:2847–2855CrossRefGoogle Scholar
  59. 59.
    Naskar J, Palui G, Banerjee A (2009) J Phys Chem B 113:11787–11792CrossRefGoogle Scholar
  60. 60.
    Manchineella S, Govindaraju T (2012) RSC Adv 2:5539–5542CrossRefGoogle Scholar
  61. 61.
    Hou X, Gao D, Yan J, Ma Y, Liu K, Fang Y (2011) Langmuir 27:12156–12163CrossRefGoogle Scholar
  62. 62.
    Mahapatra RD, Dey J, Weiss RG (2017) Langmuir 33:12989–12999CrossRefGoogle Scholar
  63. 63.
    Baral A, Roy S, Dehsorkhi A, Hamley IW, Mohapatra S, Ghosh S, Banerjee A (2014) Langmuir 30:929–936CrossRefGoogle Scholar
  64. 64.
    Adhikary B, Palui G, Banerjee A (2009) Soft Matter 5:3452–3460CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical TechnologyVidyasagar UniversityMedinipurIndia

Personalised recommendations