Advertisement

Synthesis and characterization of CuZnO@GO nanocomposites and their enhanced antibacterial activity with visible light

  • Xufei Li
  • Yangli Che
  • Yan Lv
  • Fang Liu
  • Yongqiang Wang
  • Chaocheng Zhao
  • Chunshuang Liu
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • 78 Downloads

Abstract

Copper and zinc composite oxide (CuZnO) was synthesized successfully via a sol–gel method and modified by silane coupling agent to prepare CuZnO@graphene oxide (CuZnO@GO) nanocomposites, with CuZnO nanoparticles (NPs) distributed on the GO nanosheets. The structural properties of prepared CuZnO@GO nanocomposites were studied by FT-IR and XRD techniques. SEM and TEM analysis showed the spherical morphology of CuZnO NPs with a diameter of 20–40 nm. The optical properties of synthesized products were estimated through UV–Vis DRS and PL spectroscopy, which suggested that CuZnO@GO nanocomposites had a widened absorption range from UV to visible region and a lower photogenerated carrier recombination rate than that of pure CuZnO NPs. The antibacterial mechanism of CuZnO@GO nanocomposites was investigated using gram-negative bacteria Escherichia coli and gram-positive bacteria Staphylococcus aureus as two model microorganisms. The antibacterial properties of CuZnO@GO nanocomposites on mixed bacteria were researched in the cooling water system. The results showed that when adding CuZnO@GO nanocomposites to E. coli or S. aureus suspension, the protein leakage after 20 h was 10.5 times or 8.3 times higher than that in the blank experiment. Furthermore, the antibacterial activity of CuZnO@GO nanocomposites in presence of visible light was found to be significantly enhanced as compared with control. Under visible light irradiation, the antibacterial rate of CuZnO@GO nanocomposites in circulating cooling water reached 99.09% when the mass fraction of GO was 17.5%, and more than 90% of bacteria were inactivated by 100 mg·L1 CuZnO@GO nanocomposites in 60 min after four recycled runs.

Schematic of antibacterial mechanism of CuZnO@GO nanocomposites

Highlights

  • CuZnO@GO nanocomposites with excellent photocatalytic antibacterial activity were synthesized.

  • The antibacterial mechanism of CuZnO@GO nanocomposites was investigated using pure bacteria.

  • The antibacterial application of CuZnO@GO nanocomposites for complex bacteria was researched.

  • After four recycled runs, the antibacterial rate of CuZnO@GO nanocomposites was still up to 90%.

Keywords

CuZnO@GO nanocomposites Visible light Photocatalytic antibacterial activity Antibacterial mechanism Water treatment 

Notes

Acknowledgments

This research was financially supported by Natural Science Foundation of Shandong Province, China (ZR201702140013).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Wang HB, Hu C, Hu XX et al. (2012) Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system. Water Res 46(4):1070–1078Google Scholar
  2. 2.
    Batterman S, Eisenberg J, Hardin R et al. (2009) Sustainable control of water-related infectious diseases: a review and proposal for interdisciplinary health-based systems research. Environ Health Perspect 117(7):1023–1032Google Scholar
  3. 3.
    Zhang Y, Zhu Y, Yu J et al. (2013) Enhanced photocatalytic water disinfection properties of Bi2MoO6–RGO nanocomposites under visible light irradiation. Nanoscale 5(14):6307–6310Google Scholar
  4. 4.
    Krasner SW, Weinberg HS, Richardson SD et al. (2006) Occurrence of a new generation of disinfection byproducts. Environ Sci Technol 40(23):7175–7185Google Scholar
  5. 5.
    Jafry HR, Liga MV, Li QL et al. (2011) Simple route to enhanced photocatalytic activity of P25 titanium dioxide nanoparticles by silica addition. Environ Sci Technol 45(4):1563–1568Google Scholar
  6. 6.
    Chong MN, Jin B, Chow CWK et al. (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027Google Scholar
  7. 7.
    Kasinathan K, Kennedy J, Elayaperumal M et al. (2016) Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications. Sci Rep 6:1–12Google Scholar
  8. 8.
    Kumar R, Anandan S, Hembram K et al. (2014) Efficient ZnO-based visible-light-driven photocatalyst for antibacterial applications. ACS Appl Mater Interfaces 6(15):13138–13148Google Scholar
  9. 9.
    Liu C, Kong D, Hsu PC et al. (2016) Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat Nanotech 11(12):1098–1104Google Scholar
  10. 10.
    Luo M, Liu Y, Hu JC et al. (2012) One-pot synthesis of cds and ni-doped cds hollow spheres with enhanced photocatalytic activity and durability. ACS Appl Mater Interfaces 4(3):1813–1821Google Scholar
  11. 11.
    Piccirillo C, Pinto RA, Tobaldi DM et al. (2015) Light induced antibacterial activity and photocatalytic properties of Ag/Ag3PO4-based material of marine origin. J Photochem Photobiol 296:40–47Google Scholar
  12. 12.
    Kumar S, Dhiman A, Sudhagar P et al. (2018) ZnO–graphene quantum dots heterojunctions for natural sunlight-driven photocatalytic environmental remediation. Appl Surf Sci 447:802–815Google Scholar
  13. 13.
    Choina J, Bagabas A, Fischer C et al. (2015) The influence of the textural properties of ZnO nanoparticles on adsorption and photocatalytic remediation of water from pharmaceuticals. Catal Today 241:47–54Google Scholar
  14. 14.
    Kavitha T, Gopalan AI, Lee KP et al. (2012) Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon N Y 50(8):2994–3000Google Scholar
  15. 15.
    Sakthivel S, Neppolian B, Shankar MV et al. (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energ Mat Sol C 77(1):65–82Google Scholar
  16. 16.
    Sirelkhatim A, Mahmud S, Seeni A et al. (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Micro Lett 7(3):219–242Google Scholar
  17. 17.
    Ghosh S, Goudar VS, Padmalekha KG et al. (2012) ZnO/Ag nanohybrid: synthesis, characterization, synergistic antibacterial activity and its mechanism. Rsc Adv 2(3):930–940Google Scholar
  18. 18.
    Yousefi R, Jamali SF, Cheraghizade M et al. (2016) Synthesis and characterization of Pb-doped ZnO nanoparticles and their photocatalytic applications. Mater Res Innov 20(2):121–127Google Scholar
  19. 19.
    Yu C, Yang K, Xie Y et al. (2013) Novel hollow Pt–ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability. Nanoscale 5(5):2142–2151Google Scholar
  20. 20.
    Fakhri A, Azad M, Tahami S (2017) Degradation of toxin via ultraviolet and sunlight photocatalysis using ZnO quantum dots/CuO nanosheets composites: preparation and characterization studies. J Mater Sci Mater Electron 28(21):1–6Google Scholar
  21. 21.
    Wu W, Zhang S, Xiao X et al. (2012) Controllable synthesis, magnetic properties, and enhanced photocatalytic activity of spindlelike mesoporous α-Fe(2)O(3)/ZnO core-shell heterostructures. ACS Appl Mater Interfaces 4(7):3602–3609Google Scholar
  22. 22.
    Subhan MA, Uddin N, Sarker P (2015) Photoluminescence, photocatalytic and antibacterial activities of CeO2·CuO·ZnO nanocomposite fabricated by co-precipitation method. Spectrochim Acta A Mol Biomol Spectrosc 149(46):839–850Google Scholar
  23. 23.
    Liu J, Li F, Liu C et al. (2014) Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys. Mater Sci Eng 35(1):392–400Google Scholar
  24. 24.
    Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409(8):1603–1608Google Scholar
  25. 25.
    Zhao J, Wang Z, Dai Y et al. (2013) Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter. Water Res 47(12):4169–4178Google Scholar
  26. 26.
    Cruz G, Gómez MM, Solis JL et al. (2018) Composites of ZnO nanoparticles and biomass based activated carbon: adsorption, photocatalytic and antibacterial capacities. Water Sci Technol 2017(2):492–508Google Scholar
  27. 27.
    Akhavan O, Azimirad R, Safa S (2011) Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria. Mater Chem Phys 130(1):598–602Google Scholar
  28. 28.
    Papageorgiou DG, Kinloch LA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127Google Scholar
  29. 29.
    Pumera M (2013) Electrochemistry of graphene, graphene oxide and other graphenoids: review. Electrochem Commun 36(6):14–18Google Scholar
  30. 30.
    De JN, Allioux M, Oostveen JT et al. (2005) Optical performance of carbon-nanotube electron sources. Phys Rev Lett 94(18):1–4Google Scholar
  31. 31.
    Ueki Y, Aoki T, Ueda K et al. (2017) Thermophysical properties of carbon-based material nanofluid. Int J Heat Mass Transf 113:1130–1134Google Scholar
  32. 32.
    Hu W, Peng C, Luo W et al. (2010) Graphene-based antibacterial paper. ACS Nano 4(7):4317–4323Google Scholar
  33. 33.
    Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736Google Scholar
  34. 34.
    Lian P, Zhu X, Liang S et al. (2010) Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta 55(12):3909–3914Google Scholar
  35. 35.
    He M, Wu T, Pan S et al. (2014) Antimicrobial mechanism of flavonoids against Escherichia coli, ATCC 25922 by model membrane study. Appl Surf Sci 305:515–521Google Scholar
  36. 36.
    Banerjee M, Mallick S, Paul A et al. (2010) Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan-silver nanoparticle composite. Langmuir 26(8):5901–5908Google Scholar
  37. 37.
    Novakowski KE, Loukov D, Chawla V et al. (2017) Bacterial binding, phagocytosis, and killing: measurements using colony forming units. Methods Mol Biol 1519:297–309Google Scholar
  38. 38.
    Zhang CC, Chen MX, Xu XY et al. (2014) Graphene oxide reduced and modified by environmentally friendly glycylglycine and its excellent catalytic performance. Nanotechnology 25(13):1–12Google Scholar
  39. 39.
    Yan B, Yue G, Yang J et al. (2013) On the bandgap of hydrogenated nanocrystalline silicon intrinsic materials used in thin film silicon solar cells. Sol Energ Mat Sol C 111(1):90–96Google Scholar
  40. 40.
    Lim J, Shin K, Kim HW et al. (2004) Effect of annealing on the photoluminescence characteristics of ZnO thin films grown on the sapphire substrate by atomic layer epitaxy. Mater Sci Eng 107(3):301–304Google Scholar
  41. 41.
    Yang J, Zheng J, Zhai H et al. (2010) Orented growth of ZnO nanostructures on different substrates via hydrothermal method. J Alloy Compd 489(1):51–55Google Scholar
  42. 42.
    Zhang Y, Mu J et al. (2007) Controllable synthesis of flower- and rod-like ZnO nanostructures by simply tuning the ratio of sodium hydroxide to zinc acetate. Nanotechnology 18(7):1–6Google Scholar
  43. 43.
    Liu S, Zeng TH, Hofmann M et al. (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9):6971–6980Google Scholar
  44. 44.
    Wahab R, Siddiqui MA, Saquib Q et al. (2014) ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloid Surf B 117(7):267–276Google Scholar
  45. 45.
    Padmavathy N, Vijayaraghavan R (2011) Interaction of ZnO nanoparticles with microbes—a physio and biochemical assay. J Biomed Nanotechnol 7(6):813–822Google Scholar
  46. 46.
    Lv XJ, Fu WF, Chang HX et al. (2012) Hydrogen evolution from water using semiconductor nanoparticle/graphene composite photocatalysts without noble metals. J Mater Chem 22(4):1539–1546Google Scholar
  47. 47.
    Zhang L, Ding Y, Povey M et al. (2008) ZnO nanofluids—a potential antibacterial agent. Prog Nat Sci Mater 18(8):939–944Google Scholar
  48. 48.
    Liu S, Hu M, Zeng TH et al. (2012) Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 28(33):12364–12372Google Scholar
  49. 49.
    Some S, Ho SM, Dua P et al. (2012) Dual functions of highly potent graphene derivative poly-l-lysine composites to inhibit bacteria and support human cells. ACS Nano 6(8):7151–7161Google Scholar
  50. 50.
    Liu F, Zhao CC, Xia L et al. (2011) Biofouling characteristics and identification of preponderant bacteria at different nutrient levels in batch tests of a recirculating cooling water system. Environ Technol 32(8):901–910Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication 2018

Authors and Affiliations

  1. 1.Department of Environmental and Safety Engineering, College of Chemical EngineeringChina University of PetroleumQingdaoChina

Personalised recommendations