Mechanical behaviour of aerogels and composite aerogels submitted to specific penetration tests

  • A. Faivre
  • L. Duffours
  • P. Colombel
  • F. Despetis
Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)


Silica aerogels are potentially ideal candidates to capture fast moving particles in their ultra-porous compliant structure and aerogel capture cells have been deployed in low earth orbit on a number of occasions. It is consequently interesting to better characterize the mechanical properties of these ultra-porous materials under very large deformation and collapse. Some special flat punch indentation experiments are used in this study to test these properties. The large flat punch penetration induces the creation of a track in the sample with a series of pilled Hertzian cone cracks and samples can resist without breakage for penetration depth of several millimeters. The influences of the aerogel density and of the penetration rate are checked in both standard and fibers reinforced aerogels. The lower the density, the more compliant the aerogel is to large penetration.

Ultra-porous silica standard and fibers reinforced aerogels were synthetized and tested by special large penetration indentation experiments. Flat punch can penetrate the sample up to several millimeters without total breakage of the material


  • Flat punch can penetrate ultra-porous silica standard and fibers reinforced aerogels up to several millimeters without total breakage of the material

  • Hertzian cone cracks develop along the penetration track of the flat punch

  • The lower the density of the standard or composite aerogel, the more compliant the material to flat punch penetration

  • Fibers reinforcement allows larger penetration of the flat punch without total breakage compared to similar density standard aerogels


Silica aerogels Composite aerogels Indentation Flat punch Large depth penetration 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Kistler SS (1932) Coherent expanded-aerogels. J Phys Chem 36(1):52–64CrossRefGoogle Scholar
  2. 2.
    Carraher CE (2005) General topics: silica aerogels properties and uses. Polym News 30:386–388CrossRefGoogle Scholar
  3. 3.
    Brinker J, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol–gel processing. Academic Press, BostonGoogle Scholar
  4. 4.
    Phalippou J, Woignier T, Prassas M (1990) Glasses from aerogels. J Mater Sci 25(7):3111–3117CrossRefGoogle Scholar
  5. 5.
    Burchell MJ, Graham G, Kearsley A (2006) Cosmic dust collection in aerogel. Annual reviews of earth and planetary. Science 34:385–418Google Scholar
  6. 6.
    Brownlee DE, Tsou P, Anderson JD, Hanner MS, Newburn RL, Sekanina Z, Clark BC, Hörz F, Zolensky ME, Kissel J, McDonnell JAM, Sandford SA, Tuzzolino AJ (2003) Stardust: comet and interstellar dust sample return mission. J Geophys Res 108(E10):8111CrossRefGoogle Scholar
  7. 7.
    Poelz G, Riethmüller R (1982) Preparation of silica aerogel for Cerenkov Counters. Nucl Instr Meth 195:491–503CrossRefGoogle Scholar
  8. 8.
    Pajonk GM (1998) Transparent silica aerogels. J Non-Cryst Solids 225:307–314CrossRefGoogle Scholar
  9. 9.
    Schmitt WJ (1982) The preparation and properties of acid catalysed silica aerogels. MSc thesis, University of Wisconsin MadisonGoogle Scholar
  10. 10.
    Tillotson TM, Hrubesh LW (1992) Transparent ultralow-density aerogels prepared by a two-step sol-gel process. J Non-Cryst Solids 145:44–50CrossRefGoogle Scholar
  11. 11.
    Tewari PH, Hunt AJ, Lofftus KD (1985) Ambiant temperature supercritical drying of transparent silica aerogels. Mater Lett 3:363–367CrossRefGoogle Scholar
  12. 12.
    Tewari PH, Hunt AJ, Lofftus KD (1986) Advances in production of transparent silica aerogels for window glazings. In: Fricke J ed Aerogels. Springer, Berlin Heidelberg New York, p 31–37CrossRefGoogle Scholar
  13. 13.
    Tobin M, Andrew J, Haupt D, Mann K, Poco J, Satcher J, Curran D, Tokheim R, Eder D (2003) Using silica aerogel to characterize hypervelocity shrapnel produced in high power laser experiments. Int J Impact Engng 29:713–721CrossRefGoogle Scholar
  14. 14.
    Koniges A E, Debonnel C S, Andrew J, Eder D, Kalantar D, Masters N, Fisher A, Anderson R, Gunney B, Brown B, Sain K, Bonneau F, Bourgade J L, Chevalier JM, Combis P, Geille A, Jadaud J P, Maroni, Raffestin D, Ulmer J L, Vierne J, Tobin A M, Meyers M, Jarmakani H (2008) Experiments for the validation of debris and shrapnel calculations. 5th International Conference on Inertial Fusion Sciences and Applications (IFSA 2007) Book Series: Journal of Physics Conference Series 112: UNSP 032072Google Scholar
  15. 15.
    Ayral A, Phalippou J, Woignier T (1992) The skeletal density of silica aerogels determined by helium pycnometry. J Mater Sci 27:1166–70CrossRefGoogle Scholar
  16. 16.
    Johnson K L (1985) Contact Mechanics. Cambridge University Press, CambridgeGoogle Scholar
  17. 17.
    Tabor D (1951) The hardness of solids. Clarendon Press, OxfordGoogle Scholar
  18. 18.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583CrossRefGoogle Scholar
  19. 19.
    Woignier T, Phalippou J, Hdach H, Larnac G, Pernot F, Scherer GW (1992) Evolution of mechanical properties during the alcogel-aerogel-glass process. J Non-Cryst Solids 147&148:672–680CrossRefGoogle Scholar
  20. 20.
    Woignier T, Reynes J, Hafidi Alaoui A, Beurroies I, Phalippou J (1998) Different kinds of structure in aerogels: relationships with the mechanical properties. J Non-Cryst Solids 241:45–52CrossRefGoogle Scholar
  21. 21.
    Moner-Girona M, Roig A, Molins E, Martı́nez E, Esteve J (1999) Micromechanical properties of silica aerogels. Appl Phys Lett 75:653–655CrossRefGoogle Scholar
  22. 22.
    Woignier T, Despetis F, Alaoui A, Etienne P, Phalippou J (2000) Mechanical properties of gel-derived materials. J Sol-Gel Sci Technol 19:163–169CrossRefGoogle Scholar
  23. 23.
    Kucheyev SO, Stadermann M, Shin SJ, Satcher Jr JR, Gammon SA, Letts SA, van Buuren T, Hamza AV (2012) Super-compressibility of ultralow-density nanoporous silica. Adv Mater 24:776–780CrossRefGoogle Scholar
  24. 24.
    Tumbajoy-Spinela DY, Feulvarchb E, Bergheaub JM, Kermouche G (2013) 2D axisymmetric X-FEM modelling of the Hertzian cone crack system. C R Mec 341:715–725CrossRefGoogle Scholar
  25. 25.
    Mouginot R, Maugis D (1985) Fracture indentation beneath flat and spherical punches. J Mater Sci 20:4354–4376CrossRefGoogle Scholar
  26. 26.
    Benbow JJ (1960) Cone cracks in fused silica. Proc Phys Soc 75(5):697–699CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Faivre
    • 1
  • L. Duffours
    • 2
  • P. Colombel
    • 2
  • F. Despetis
    • 1
  1. 1.Laboratoire Charles Coulomb (L2C), Université de Montpellier, UMR 5221 CNRSMontpellier Cedex 5France
  2. 2.PRIMEVERRE, Pat du Millénaire, 1350 av. A. EinsteinMontpellierFrance

Personalised recommendations