Advertisement

Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 176–188 | Cite as

Chlorine-free, monolithic lanthanide series rare earth oxide aerogels via epoxide-assisted sol-gel method

  • M. A. WorsleyEmail author
  • J. Ilsemann
  • Th. M. Gesing
  • V. Zielasek
  • A. J. Nelson
  • R. A. S. Ferreira
  • L. D. Carlos
  • A. E. Gash
  • M. Bäumer
Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • 268 Downloads

Abstract

Synthesis of chlorine-free, rare earth oxide aerogels from the lanthanide series was achieved using a modified epoxide-assisted sol-gel method. An ethanolic solution of the hydrated metal nitrate, propylene oxide, and ammonium carbonate was found to gel upon heating to 333 K. Critical point drying of the wet gel in CO2 yielded monolithic aerogels. Most of the aerogels were amorphous as-prepared, but became nano-crystalline after calcination at 923 K in air. The aerogels had high surface areas (up to 150 m2/g), low densities (40–225 mg/cm3), and were photoluminescent.

Highlights

  • Rare earth oxide aerogels were prepared by epoxide-assisted sol-gel route.

  • Rare earth oxide aerogels are monolithic, chlorine-free, and possess large surface areas.

  • Calcination at 923 K results in nano-crystalline aerogels, with particles less than 25 nm in diameter.

  • Characterization of these aerogels includes photoluminescence spectroscopy, Rietveld refinements, and electron microscopy.

Keywords

Rare earth oxide Aerogel Sol-gel Monolith Catalyst Photoluminescence Rietveld refinement 

Notes

Acknowledgements

We like to thank the German Science Foundation (DFG) for financial support in the scientific large instrument program under the project number INST144/435-1FUGG. JI and MB gratefully acknowledge funding by the DFG through the graduate school 1860 “Micro-, meso- and macroporous nonmetallic Materials: Fundamentals and Applications”. This work is partially developed in the scope of the projects CICECO—Aveiro Institute of Materials (UID/CTM/50011/2013) financed by national funds through the Fundação para a Ciência e a Tecnologia/Ministério da Educação e Ciência (FCT/MEC) and when applicable co-financed by FEDER under the PT2020 Partnership Agreement. We acknowledge the Fraunhofer Institute for Manufacturing Technology and Advanced Materials (Bremen, Germany) for the provision of access to their TEM facility and Karsten Thiel for assistance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, through LDRD awards 13-LW-099 and 16-ERD-051.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2018_4811_MOESM1_ESM.docx (21.2 mb)
Supplementary information

References

  1. 1.
    McFarland EW, Metiu H (2013) Catalysis by doped oxides. Chem Rev 113:4391Google Scholar
  2. 2.
    Ranjit KT, Cohen H, Willner I, Bossmann S, Braun AM (1999) Lanthanide oxide-doped titanium dioxide: effective photocatalysts for the degradation of organic pollutants. J Mater Sci 34:5273Google Scholar
  3. 3.
    Sauer J, Marlow F, Spliethoff B, Schüth F (2002) Rare earth oxide coating of the walls of SBA-15. Chem Mater 14:217Google Scholar
  4. 4.
    Skårman B, Grandjean D, Benfield RE, Hinz A, Andersson A, Wallenberg LR (2002) Carbon monoxide oxidation on nanostructured CuOx/CeO2 composite particles characterized by HREM, XPS, XAS, and high-energy diffraction. J Catal 211:119Google Scholar
  5. 5.
    Van der Avert P, Weckhuysen BM (2002) Low-temperature destruction of chlorinated hydrocarbons over lanthanide oxide based catalysts Angew Chem Int Ed 41:4730Google Scholar
  6. 6.
    Borchert Y, Sonström P, Wilhelm M, Borchert H, Bäumer M (2008) Nanostructured praseodymium oxide: preparation, structure, and catalytic properties. J Phys Chem C 112:3054Google Scholar
  7. 7.
    Reddy BM, Thrimurthulu G, Katta L, Yamada Y, Park S-E (2009) Structural characteristics and catalytic activity of nanocrystalline ceria–praseodymia solid solutions. J Phys Chem C 113:15882Google Scholar
  8. 8.
    Zhang HD, Li B, Zheng QX, Jiang MH, Tao XT (2008) Synthesis and characterization of monolithic Gd2O3 aerogels. J Non-Cryst Solids 354:4089Google Scholar
  9. 9.
    Zhang Y, Lei Z, Li J, Lu S (2001) A new route to three-dimensionally well-ordered macroporous rare-earth oxides. New J Chem 25:1118Google Scholar
  10. 10.
    Tillotson TM, Sunderland WE, Thomas IM, Hrubesh LW (1994) Synthesis of lanthanide and lanthanide-silicate aerogels. J Sol-Gel Sci Technol 1:241Google Scholar
  11. 11.
    Clapsaddle BJ, Neumann B, Wittstock A, Sprehn DW, Gash A, Satcher JH, Simpson RL, B„umer M (2012) A sol-gel methodology for the preparation of lanthanide-oxide aerogels: preparation and characterization. J Sol-Gel Sci Technol 64:381Google Scholar
  12. 12.
    Hutchings GJ, King F, Okoye IP, Rochester CH (1994) Influence of chlorine poisoning of copper/alumina catalyst on the selective hydrogenation of crotonaldehyde. Catal Lett 23:127Google Scholar
  13. 13.
    Heldal JA, Mørk PC (1982) Chlorine-containing compounds as copper catalyst poisons. J Am Oil Chem Soc 59:396Google Scholar
  14. 14.
    Shin E-J, Spiller A, Tavoularis G, Keane MA (1999) Chlorine–nickel interactions in gas phase catalytic hydrodechlorination: catalyst deactivation and the nature of reactive hydrogen. Phys Chem Chem Phys 1:3173Google Scholar
  15. 15.
    Gregg SJ, Sing KSW (1982) Adsorption, surface area, and porosity. 2nd edn. Academic, LondonGoogle Scholar
  16. 16.
    Gash AE, Tillotson TM, Satcher JH, Poco JF, Hrubesh LW, Simpson RL (2001) Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem Mater 13:999Google Scholar
  17. 17.
    Gash AE, Satcher JH, Simpson RL (2003) Strong akaganeite aerogel monoliths using epoxides: synthesis and characterization. Chem Mater 15:3268Google Scholar
  18. 18.
    Baumann TF, Gash AE, Chinn SC, Sawvel AM, Maxwell RS, Satcher JH (2005) Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chem Mater 17:395Google Scholar
  19. 19.
    Poco JF, Satcher JH, Hrubesh LW (2001) Synthesis of high porosity, monolithic alumina aerogels. J Non-Cryst Solids 285:57Google Scholar
  20. 20.
    Teck M, Murshed MM, Schowalter M, Lefeld N, Grossmann HK, Grieb T, Hartmann T, Robben L, Rosenauer A, Mädler L, Gesing TM (2017) Structural and spectroscopic comparison between polycrystalline, nanocrystalline and quantum dot visible light photo-catalyst Bi2WO6. J Solid State Chem 254:82Google Scholar
  21. 21.
    Aldebert P, Traverse JP (1979) Etude par diffraction neutronique des structures de haute temperature de La2O3 et Nd2O3. Mater Res Bull 14:303Google Scholar
  22. 22.
    Andreeva AF, Gil’man IY, Gamarnik MY, Dekhtyaruk VI (1986) Structure and some optical properties of films of Pr6O11. Inorg Mater 22:1155Google Scholar
  23. 23.
    Antic B, Mitric M, Rodic D (1995) Structure properties and magnetic susceptibility of diluted magnetic semiconductor Y2−xHoxO3. J Magn Magn Mater 145:349Google Scholar
  24. 24.
    Antic B, Oennerud P, Rodic D, Tellgren R (1993) The structure characteristics of the diluted magnetic semiconductor Y2−xDyxO3. Powder Diffr 8:216Google Scholar
  25. 25.
    Artini C, Pani M, Plaisier JR, Costa GA (2014) Structural study of Nd oxidation by means of in-situ synchrotron X-ray diffraction. Solid State Ion 257:38Google Scholar
  26. 26.
    Atou T, Kusaba K, Fukuoka K, Kikuchi M, Syono Y (1990) Shock-induced phase transition of M2O3-type compounds. J Solid State Chem 89:378Google Scholar
  27. 27.
    Atou T, Kusaba K, Tsuchida Y, Utsumi W, Yagi T, Syono Y (1989) Reversible B-type–A-type transition of Sm2O3 under high pressure. Mater Res Bull 24:1171Google Scholar
  28. 28.
    Bartos A, Lieb KP, Uhrmacher M, Wiarda D (1993) Refinement of atomic positions in bixbyite oxides using perturbed angular correlation spectroscopy. Acta Crystallogr B 49:165Google Scholar
  29. 29.
    Ben Farhat L, Amami M, Hlil EK, Ben Hassen R (2009) Structural and vibrational study of C-type doped rare earth sesquioxide. J Alloy Compd 479:594Google Scholar
  30. 30.
    Ben Farhat L, Amami M, Hlil EK, Ben Hassen R (2010) Synthesis, structure and magnetic properties of the mixed system. Mater Chem Phys 123:737Google Scholar
  31. 31.
    Bevan DJM (1955) Ordered intermediate phases in the system CeO2–Ce2O3. J Inorg Nucl Chem 1:49Google Scholar
  32. 32.
    Bischof R, Kaldis E, Lacis I (1983) Crystal growth os ytterbium dihydride and the phase relations in the Yb–H system. J Less-Common Met 94:117Google Scholar
  33. 33.
    Blanusa J, Mitric M, Felner I, Jovic N, Bradaric I (2003) The crystal structure refinement and magnetic susceptibility of La2−xErxO3. J Magn Magn Mater 263:295Google Scholar
  34. 34.
    Blanusa J, Mitric M, Rodic D, Szytula A, Slaski M (2000) An X-ray diffraction and magnetic susceptibility study of TmxY2−xO3. J Magn Magn Mater 213:75Google Scholar
  35. 35.
    Bommer H (1939) Die Gitterkonstanten der C-Formen der Oxyde der seltenen Erdmetalle. Z Anorg Allg Chem 241:273Google Scholar
  36. 36.
    Boucherle JX, Schweizer J (1975) Refinement of the Nd2O3 structure and determination of the neutron scattering length of neodymium. Acta Crystallogr B 31:2745Google Scholar
  37. 37.
    Boulesteix C, Pardo B, Caro PE, Gasgnier M, la Blanchetais CH (1971) Etude de couches minces de sesquioxyde de samarium type par microscopie et diffraction electroniques. Acta Crystallogr B 27:216Google Scholar
  38. 38.
    Chandrasekhar M, Nagabhushana H, Sudheerkumar KH, Dhananjaya N, Sharma SC, Kavyashree D, Shivakumara C, Nagabhushana BM (2014) Comparison of structural and luminescence properties of Dy2O3 nanopowders synthesized by co-precipitation and green combustion routes. Mater Res Bull 55:237Google Scholar
  39. 39.
    Chandrasekhar M, Sunitha DV, Dhananjaya N, Nagabhushana H, Sharma SC, Nagabushana BM, Shivakumara C, Chakradhar RPS (2012) Structural and phase dependent thermo and photoluminiscent properties of Dy3 and DyO3 nanorods. Mater Res Bull 47:2085Google Scholar
  40. 40.
    Chen G, Peterson JR, Brister KE (1994) An energy-dispersive X-ray diffraction study of monoclinic Eu2O3 under pressure. J Solid State Chem 111:437Google Scholar
  41. 41.
    Chikalla TD, McNeilly CE, Roberts FP (1972) Polymorphic modifications of Pm2O3. J Am Ceram Soc 55:428Google Scholar
  42. 42.
    Cromer DT (1957) The crystal structure of monoclinic Sm2O3. J Phys Chem 61:753Google Scholar
  43. 43.
    Cunningham GW (1963) Nuclear poisons. React Mater 6:63Google Scholar
  44. 44.
    Dordevic V, Antic Z, Nikolic MG, Dramicanin MD (2014) Comparative structural and photoluminescent study of Eu-doped La2O3 and La3 nanocrystalline powders. J Phys Chem Solids 75:276Google Scholar
  45. 45.
    Faucher M, Pannetier J, Charreire Y, Caro P (1982) Refinement of the Nd2O3 and Nd2O2S structures at 4 K. Acta Crystallogr B 38:344Google Scholar
  46. 46.
    Felsche J (1969) A new form of La2O3. Naturwissenschaften 56:212Google Scholar
  47. 47.
    Ferguson IF (1975) Lattice parameters of oxides and mixed oxides with the monoclinic rare earth type B structure. Acta Crystallogr A 31:S69Google Scholar
  48. 48.
    Fert A (1962) Structure de quelques oxydes de terres rares. Bull Fr Soc Mineral Cristallogr 85:267Google Scholar
  49. 49.
    Gasgnier M, Schiffmacher G, Caro P, Eyring L (1986) The formation of rare earth oxides far from equilibrium. J Less-Common Met 116:31Google Scholar
  50. 50.
    Gouteron J, Michel D, Lejus AM, Zarembowitch J (1981) Raman spectra of lanthanide sesquioxide single crystals: correlation between A and B-type structures. J Solid State Chem 38:288Google Scholar
  51. 51.
    Greis O, Ziel R, Breidenstein B, Haase A, Petzel T (1994) The crystal structure of the low-temperature A-type modification of Pr2O3 from X-ray powder and electron single crystal diffraction. J Alloy Compd 216:255Google Scholar
  52. 52.
    Gupta ML, Singh S (1970) Thermal expansion of CeO2, Ho2O3, and Lu2O3 from 100 Å to 300 Å K by an X-ray method. J Am Ceram Soc 53:663Google Scholar
  53. 53.
    Guzik M, Pejchal J, Yoshikawa A, Ito A, Goto T, Siczek M, Lis T, Boulon G (2014) Structural investigations of Lu2O3 as single crystal and polycrystalline transparent ceramic. Cryst Growth Des 14:3327Google Scholar
  54. 54.
    Hase W (1963) Neutronographische Bestimmung der Kristallstrukturparameter von Dy2O3, Tm2O3 und alpha-Mn2O3. Phys Status Solidi 3:446Google Scholar
  55. 55.
    Heiba Z, Okuyucu H, Hascicek YS (2002) X-ray structure determination of the rare earth oxides (Er1−uGdu)2O3 applying the Rietveld method. J Appl Crystallogr 35:577Google Scholar
  56. 56.
    Heiba ZK, Akin Y, Sigmund W, Hascicek YS (2003) X-ray structure and microstructure determination of the mixed sesquioxides (Eu1−xYbx)2O3 prepared by a sol-gel process. J Appl Crystallogr 36:1411Google Scholar
  57. 57.
    Heiba ZK, Arda L (2008) X-ray diffraction analysis of powder and thin film of (Gd1−xYx)2O3 prepared by sol-gel process. Cryst Res Technol 43:282Google Scholar
  58. 58.
    Heiba ZK, Arda L, Hascicek YS (2005) Structure and microstructure characterization of the mixed sesquioxides (Gd1−xYbx)2O3 and (Gd1−xHox)2O3 prepared by sol-gel process. J Appl Crystallogr 38:306Google Scholar
  59. 59.
    Heiba ZK, Bakr Mohamed M, Fuess H (2012) XRD, IR and Raman investigations of structural properties of Dy2−xHoxO3 prepared by sol gel procedure. Cryst Res Technol 47:535Google Scholar
  60. 60.
    Hering SA, Huppertz H (2009) High-pressure synthesis and crystal structures of monoclinic B-Ho2O3 and orthorhombic HoGaO3. Z Naturforsch B: Chem Sci 64:1032Google Scholar
  61. 61.
    Hubbert-Paletta E, Müller-Buschbaum H (1968) Roentgenographische Untersuchung an Einkristallen von monoklinem Tb2O3. Z Anorg Allg Chem 363:145Google Scholar
  62. 62.
    Ishibashi H, Shimomoto K, Nakahigashi K (1994) Electron density distribution and chemical bonding of Ln2O3 from powder x-ray diffraction data by the maximum-entropy method. J Phys Chem Solids 55:809Google Scholar
  63. 63.
    Kashaev AA, Ushchapovskii LV, Il’in AG (1975) Electron diffraction and X-ray diffraction study of rare earth metal oxides in thin films. Kristallografiya 20:192Google Scholar
  64. 64.
    Katari V, Achary SN, Deshpande SK, Babu PD, Sinha AK, Salunke HG, Gupta N, Tyagi AK (2014) Effect of annealing environment on low-temperature magnetic and dielectric properties of EuCo0.5Mn0.5O3. J Phys Chem C 118:17900Google Scholar
  65. 65.
    Kennedy BJ, Avdeev M (2011) The structure of C-type Gd2O3. A powder neutron diffraction study using enriched Gd Aust J Chem 64:119Google Scholar
  66. 66.
    Kennedy BJ, Avdeev M (2011) The structure of B-type Sm2O3. A powder neutron diffraction study using enriched 154Sm. Solid State Sci 13:1701Google Scholar
  67. 67.
    Koehler WC, Wollan EO (1953) Neutron-diffraction study of the structure of the A-form of the rare earth sesquioxides. Acta Crystallogr 6:741Google Scholar
  68. 68.
    Koehler WC, Wollan EO, Wilkinson MK (1958) Paramagnetic and nuclear scattering cross sections of holmium sesquioxyde. Phys Rev 110:37Google Scholar
  69. 69.
    Kohlmann H, Hein C, Kautenburger R, Hansen TC, Ritter C, Doyle S (2016) Crystal structure of monoclinic samarium and cubic europium sesquioxides and bound coherent neutron scattering lengths of the isotopes 154Sm and 153Eu. Z Kristal Cryst Mater 231:517Google Scholar
  70. 70.
    Whiffen RK, Antic Z, Speghini A, Brik MG, Bartova B, Bettinelli M, Dramicanin MD (2014) Structural and spectroscopic studies of Eu doped Lu2O3–Gd2O3 solid solutions. Opt Mater 36:1083Google Scholar
  71. 71.
    Lejus AM, Bernier JC, Collongues R (1976) Elaboration et proprietes magnetiques de monocristaux d’oxyde de praseodyme Pr2O3. J Solid State Chem 16:349Google Scholar
  72. 72.
    Malinovskii YA, Bondareva OS (1991) Refined crystal structure of Er2O3. Kristallografiya 36:1558Google Scholar
  73. 73.
    Maslen EN, Strel’tsov VA, Ishizawa N (1996) A synchrotron X-ray study of the electron density in C-type rare earth oxides. Acta Crystallogr B 52:414Google Scholar
  74. 74.
    McCarthy GJ (1971) Approximations in refinement of elastic constant values from thermal diffuse scattering measurements. J Appl Crystallogr 4:399Google Scholar
  75. 75.
    Mitric M, Blanusa J, Barudzija T, Jaglicic Z, Kusigerski V, Spasojevic V (2009) Magnetic properties of trivalent Sm ions in SmxY2−xO3. J Alloy Compd 485:473Google Scholar
  76. 76.
    Moon RM, Koehler WC, Child HR, Raubenheimer LJ (1968) Magnetic structures of Er2O3 and Yb2O3. Phys Rev 176:722Google Scholar
  77. 77.
    Müller-Buschbaum H (1966) Zur Struktur der A-Form der Sesquioxide der Seltenen Erden. II Strukturuntersuchung an Nd2O3. Z Anorg Allg Chem 343:6Google Scholar
  78. 78.
    Müller-Buschbaum H, von Schnering HG (1965) Strukturuntersuchungen an La2O3. Z Anorg Allg Chem 340:232Google Scholar
  79. 79.
    Pauling L (1928) The crystal structure of the A-modification of the rare earths sesquioxides. Z Kristallogr Kristallogeom Kristallophys Kristallochem 69:415Google Scholar
  80. 80.
    Pedroso CCS, Carvalho JM, Rodrigues LCV, Holsa J, Brito HF (2016) Rapid and energy-saving microwave-assisted solid-state synthesis of Pr3+-, Eu3+-, or Tb3+-doped Lu2O3 persistent luminescence materials. ACS Appl Mater Interfaces 8:19593Google Scholar
  81. 81.
    Pires AM, Davolos MR, Paiva-Santos CO, Berwerth Stucchi E, Flor J (2003) New X-ray powder diffraction data and Rietveld refinement for Gd2O3 monodispersed fine spherical particles. J Solid State Chem 171:420Google Scholar
  82. 82.
    Post B, Moskowitz D, Glaser FW (1956) Borides of rare earth and related metals. Planseeber Pulvermetall 1955:173Google Scholar
  83. 83.
    Rudenko VS, Boganov AG (1970) Reduction cycle MO2–M2O3 for cerium, praseodymium, and terbium oxides. Inorg Mater 6:1893Google Scholar
  84. 84.
    Rudenko VS, Boganov AG (1970) Stoichiometry and phase transitions in rare earth oxides. Inorg Mater 6:1893Google Scholar
  85. 85.
    Rudenko VS, Boganov AG (1973) The observation of face centred cubic Gd, Tb, Dy, Ho, Er and Tm in the form of thin films and their oxidation. J Phys F 3:1Google Scholar
  86. 86.
    Saiki A, Ishizawa N, Mizutani N, Kato M (1985) Structural change of C-rare Earth sesquioxides Yb2O3 and Er2O3 as a function of temperature. Yogyo Kyokai Shi 93:649Google Scholar
  87. 87.
    Scavini M, Coduri M, Allieta M, Brunelli M, Ferrero C (2012) Probing complex disorder in Ce1−xGdxO2−x/2 using the pair distribution function analysis. Chem Mater 24:1338Google Scholar
  88. 88.
    Schiller G (1985) Die Kristallstrukturen von Ce2O3, LiCeO2 und CeF3—Ein Beitrag zur Kristallchemie des dreiwertigen Cers. Dissertation Universitaet Karlsruhe 1985:1Google Scholar
  89. 89.
    Schleid T, Meyer G (1989) Single crystals of rare earth oxides from reducing halide melts. J Less-Common Met 149:73Google Scholar
  90. 90.
    Sheu HS, Shih WJ, Chuang WT, Li IF, Yeh CS (2010) Crystal structure and phase transition of GdOH studied by synchrotron powder diffraction. J Chin Chem Soc 57:938Google Scholar
  91. 91.
    Singh HP, Dayal B (1969) Precise determination of the lattice parameters of holmium and erbium sesquioxides at elevated temperatures. J Less-Common Met 18:172Google Scholar
  92. 92.
    Taylor D (1984) Thermal expansion data: III Sesquioxides, M2O3, with the corundum and the A-, B- and C - M2O3 structures. Trans J Br Ceram Soc 83:92Google Scholar
  93. 93.
    Turcotte RP, Warmkessel JM, Tilley RJD, Eyring L (1971) On the phase interval PrO1.50 to PrO1.71 in the praseodymium oxide–oxygen system. J Solid State Chem 3:265Google Scholar
  94. 94.
    Umesh B, Eraiah B, Nagabhushana H, Nagabhushana BM, Nagaraja G, Shivakumara C, Chakradhar RPS (2011) Synthesis and characterization of spherical and rod like nanocrystalline Nd2O3 phosphors. J Alloy Compd 509:11436Google Scholar
  95. 95.
    Vasundhara K, Achary SN, Patwe SJ, Sahu AK, Manoj N, Tyagi AK (2014) Structural and oxide ion conductivity studies on Yb1−xBixO1.5 composites. J Alloy Compd 596:151Google Scholar
  96. 96.
    Vucinic-Vasic M, Kremenovic A, Nikolic AS, Colomban P, Mazzerolles L, Kahlenberg V, Antic B (2010) Core and shell structure of ytterbium sesquioxide nanoparticles. J Alloy Compd 502:107Google Scholar
  97. 97.
    Will G, Masciocchi N, Hart M, Parrish W (1987) Ytterbium L-edge anomalous scattering measured with synchrotron radiation powder diffraction. Acta Crystallogr Sect A: Found Crystallogr 43:677Google Scholar
  98. 98.
    Wolf R, Hoppe R (1985) Eine Notiz zum A-Typ der Lanthanoidoxide: Ueber Pr2O3. Z Anorg Allg Chem 529:61Google Scholar
  99. 99.
    Wontcheu J, Schleid T (2008) Single crystals of B-type Er2O3. Z Anorg Allg Chem 634:2091Google Scholar
  100. 100.
    Yakel HL (1979) A refinement of the crystal structure of monoclinic europium sesquioxide. Acta Crystallogr B 35:564Google Scholar
  101. 101.
    Zachariasen WH (1926) Die Kristallstruktur der alpha-Modifikation von den Sesquioxiden der seltenen Erdmetalle. Z Phys Chem 123:134Google Scholar
  102. 102.
    Zachariasen WH (1927) The crystal structure of the modification C of the sesquioxides of the rare earth metals, and of indium and thallium. Nor Geol Tidsskr 9:310Google Scholar
  103. 103.
    Zachariasen WH (1928) Untersuchungen ueber die Kristallstruktur von Sesquioxyden und Verbindungen ABO3. Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo. 1, Matematisk-Naturvidenskapelig Klasse 1928:1Google Scholar
  104. 104.
    Zav’yalova AA, Imamov RM, Ragimli NA, Semiletov SA (1976) Electron-diffraction study of the structure of cubic C-Sm2O3. Kristallografiya 21:727Google Scholar
  105. 105.
    Zhang FX, Lang M, Wang JW, Becker U, Ewing RC (2008) Structural phase transition of cubic Gd2O3 at high pressures. Phys Rev Ser 3 B Condens Matter 78:064114Google Scholar
  106. 106.
    Molina C, Ferreira RAS, Poirier G, Fu L, Ribeiro SJL, Messsaddeq Y, Carlos LD (2008) Er3+-based diureasil organic–inorganic hybrids. J Phys Chem C 112:19346Google Scholar
  107. 107.
    Planelles-Arago J, Cordoncillo E, Ferreira RAS, Carlos LD, Escribano P (2011) Synthesis, characterization and optical studies on lanthanide-doped CdS quantum dots: new insights on CdS [rightward arrow] lanthanide energy transfer mechanisms. J Mater Chem 21:1162Google Scholar
  108. 108.
    Miguel A, Azkargorta J, Morea R, Iparraguirre I, Gonzalo J, Fernandez J, Balda R (2013) Spectral study of the stimulated emission of Nd3+ in fluorotellurite bulk glass. Opt Express 21:9298Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. A. Worsley
    • 1
    Email author
  • J. Ilsemann
    • 2
  • Th. M. Gesing
    • 3
    • 4
  • V. Zielasek
    • 2
  • A. J. Nelson
    • 1
  • R. A. S. Ferreira
    • 5
  • L. D. Carlos
    • 5
  • A. E. Gash
    • 1
  • M. Bäumer
    • 2
    • 4
  1. 1.Physical and Life Sciences DivisionLawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Institute of Applied and Physical Chemistry & Center for Environmental Research and Sustainable TechnologyUniversity of BremenBremenGermany
  3. 3.Solid State Chemical Crystallography, Institute of Inorganic Chemistry and CrystallographyUniversity of BremenBremenGermany
  4. 4.MAPEX Center for Materials and ProcessesUniversity of BremenBremenGermany
  5. 5.Department of Physics and CICECO—Aveiro Institute of MaterialsUniversity of AveiroAveiroPortugal

Personalised recommendations