Advertisement

Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 128–134 | Cite as

Metal-organic framework thin films from copper hydroxide nano-assemblies

  • K. Ikigaki
  • K. Okada
  • Y. Tokudome
  • M. TakahashiEmail author
Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • 165 Downloads

Abstract

Potential applications of thin films of metal-organic frameworks (MOFs) cover widespread areas, including advanced optics, electronics, and magnetics. Controlling location and orientation of MOF crystals on a device-scale (over the centimeter scale) substrate is crucial to achieve these applications. Metal hydroxides are advantageous precursors for the MOF synthesis because of their high reactivity with organic linkers, allowing the crystallization of MOFs under mild conditions in a harmless solvent at a room temperature. In addition, the reaction scheme using metal hydroxides as precursors allows to fabricate MOF crystals on polymer, metal and ceramics substrates, where in some cases, substrates with deformability or 3D microstructures can be employed. In this perspective, our recent advances on the fabrication of MOF thin films grown on assemblies of metal hydroxide nanocrystals are reviewed. The present approach enables us to control both position and orientation of MOF crystals on a substrate. The aligned MOF films exhibit anisotropic properties by accommodating functional molecules in their micropores. The materials demonstrated here are considered as good candidates for solid catalysts, bio-sensors, anisotropic electrical/optical devices, and others.

Upper and lower images show the fabrication methods of MOF patterns via Cu(OH)2 nanotube assemblies and oriented MOF thin films via Cu(OH)2 nanobelt assemblies, respectively.

Highlights

  • Our advances on the MOF thin films with a controlled location and an orientation are reviewed.

  • Cu(OH)2 nano-assemblies are effective precursor for the MOF patterns and oriented MOF thin films.

  • Precise MOF patterns can be achieved by the conversion of patterned Cu(OH)2 nanotube assemblies.

  • A perfectly oriented MOF thin film can be synthesized from oriented Cu(OH)2 nanobelt assemblies.

Keywords

Porous thin films Metal-organic frameworks Copper hydroxides Patterning Pore alignment 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM (2013) Science 341:1230444CrossRefGoogle Scholar
  2. 2.
    Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi OM (2002) Science 295:469–472CrossRefGoogle Scholar
  3. 3.
    Li B, Wen HM, Zhou W, Chen B (2014) J Phys Chem Lett 5:3468–347CrossRefGoogle Scholar
  4. 4.
    Kreno LE, Leong K, Farha OK, Allendorf M, Duyne RPV, Hupp JT (2012) Chem Rev 112:1105–1125CrossRefGoogle Scholar
  5. 5.
    Allendorf MD, Schwartzberg A, Stavila V, Talin AA (2016) Chem Eur J 22:14452–14460CrossRefGoogle Scholar
  6. 6.
    Wu G, Huang J, Zang Y, He J, Xu Gang (2017) J Am Chem Soc 139:1360–1363Google Scholar
  7. 7.
    Talin AA, Centrone A, Ford AC, Foster ME, Stavila V, Haney P, Kinney RA, Szalai V, El Gabaly F, Yoon HP, Léonard F, Allendorf MD (2014) Science 343:66–69CrossRefGoogle Scholar
  8. 8.
    Ameloot R, Stappers L, Fransaer J, Alaerts L, Sels BF, De Vos DE (2009) Chem Mater 21:2580–2582CrossRefGoogle Scholar
  9. 9.
    Doherty CM, Grenci G, Riccò R, Mardel JI, Reboul J, Furukawa S, Kitagawa S, Hill AJ, Falcaro P (2013) Adv Mater 25:4701–4705CrossRefGoogle Scholar
  10. 10.
    Liu J, Chen L, Cui H, Zhang J, Zhang L, Su CY (2014) Chem Soc Rev 43:6011CrossRefGoogle Scholar
  11. 11.
    Li JR, Sculley J, Zhou HC (2012) Chem Rev 112:869–932CrossRefGoogle Scholar
  12. 12.
    Usman M, Mendiratta S, Lu KL (2017) Adv Mater 29:1605071CrossRefGoogle Scholar
  13. 13.
    Okada K, Sawai S, Ikigaki K, Tokudome Y, Falcaro P, Takahashi M, (2017) CrystEngComm 19:4194-4200Google Scholar
  14. 14.
    Okada K, Ricco R, Tokudome Y, Styles MJ, Hill AJ, Takahashi M, Falcaro P (2014) Adv Funct Mater 24:1969–1977Google Scholar
  15. 15.
    Falcaro P, Okada K, Hara T, Ikigaki K, Tokudome Y, Thornton AW, Hill AJ, Williams T, Doonan D, Takahashi M (2017) Nat Mater 16:342–348Google Scholar
  16. 16.
    Lu G, Farha OK, Zhang W, Huo F, Hupp JT (2012) Adv Mater 24:3970–3974Google Scholar
  17. 17.
    Zhuang JL, Ar D, Yu XJ, Liu JX, Terfort A (2013) Adv Mater 25:4631–4635Google Scholar
  18. 18.
    Zhang W, Wen X, Yang S, Berta Y, Wang ZL (2003) Adv Mater 15:822Google Scholar
  19. 19.
    Majano G, Pérez-Ramírez J (2013) Adv Mater 25:1052–1057Google Scholar
  20. 20.
    Stassen I, Vos DD, Ameloot R (2016) Chem Eur J 22:14452–14460Google Scholar
  21. 21.
    Bétard A, Fischer RA (2012) Chem Rev 112:1055–1083Google Scholar
  22. 22.
    Falcaro P, Ricco R, Doherty CM, Liang K, Hill AJ, Styles MJ (2014) Chem Soc Rev 45:5513Google Scholar
  23. 23.
    Stassen I, Burtch N, Talin A, Falcaro P, Allendorf M, Ameloot R (2017) Chem Soc Rev 46:3185Google Scholar
  24. 24.
    Lu G, Hupp JT (2010) J Am Chem Soc 132:7832–7833Google Scholar
  25. 25.
    Biemmi E, Scherb C, Bein T (2007) J Am Chem Soc 129:8054–8055Google Scholar
  26. 26.
    Ranjan R, Tsapatsis M (2009) J Am Chem Soc 21:4920–4924Google Scholar
  27. 27.
    Arslan HK, Shekhah O, Wohlgemuth J, Franzreb M, Fischer RA, Wöll C (2011) Adv Funct Mater 21:4228–4231Google Scholar
  28. 28.
    Ameloot R, Gobechiya E, Uji-I H, Martens JA, Hofkens J, Alaerts L, Sels BF, De-Vos DE (2010) Adv Mater 22:2685–2688Google Scholar
  29. 29.
    Makiura R, Motoyama S, Umemura Y, Yamanaka H, Sakata O, Kitagawa H (2010) Nat Mater 9:565–571Google Scholar
  30. 30.
    Li WJ, Liu J, Sun ZH, Liu TF, Lü T, Gao SY, He C, Cao R, Luo LH (2016) Nat Commun 7:11830Google Scholar
  31. 31.
    Al-Kutubi H, Gascon J, Sudhçlter EJR, Rassaei L (2015) ChemElectroChem 2:462–474Google Scholar
  32. 32.
    Schoedel A, Scherb C, Bein T (2010) Angew Chem Int Ed 49:7225–7228Google Scholar
  33. 33.
    Stassen I, Styles M, Grenci G, Gorp HV, Vanderlinden W, Feyter SD, Falcaro P, Vos DD, Vereecken P, Ameloot R (2016) Nat Mater 15:304–310Google Scholar
  34. 34.
    Makiura R, Konovalov O (2013) Sci Rep 3:2506Google Scholar
  35. 35.
    Arslan HK, Shekhah O, Wieland DCF, Paulus M, Sternemann C, Schroer MA, Tiemeyer S, Tolan M, Fischer RA, Wöll C (2011) J Am Chem Soc 133:8158–8161Google Scholar
  36. 36.
    Liu J, Lukose B, Shekhah O, Arslan HK, Weidler P, Gliemann H, Bräse S, Grosjean S, Godt A, Feng X, Müllen K, Magdau IB, Heine T, Wöll C (2012) Sci Rep 2:921Google Scholar
  37. 37.
    Liu J, Wöll C (2017) Chem Soc Rev 46:5730–5770Google Scholar
  38. 38.
    Oswald HR, Reller A, Schmalle HW, Dubler E (1990) Acta Cryst 46:2279–2284Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. Ikigaki
    • 1
  • K. Okada
    • 1
  • Y. Tokudome
    • 1
  • M. Takahashi
    • 1
    Email author
  1. 1.Department of Materials ScienceOsaka Prefecture University, SakaiOsakaJapan

Personalised recommendations