Advertisement

Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 111–119 | Cite as

Mechanically improved sol-gel derived methacrylate-siloxane hybrid materials with urethane linkage

  • Yun Hyeok Kim
  • Gwang-Mun Choi
  • Yong Ho Kim
  • Byeong-Soo BaeEmail author
Original Paper: Characterization methods of sol–gel and hybrid materials
  • 97 Downloads

Abstract

Ultraviolet (UV)-curable and highly condensed (>86%) methacrylate phenyl oligo-siloxane (MPO) was synthesized by non-hydrolytic sol–gel condensation reaction between methacrylate and phenyl silane precursor. The MPO resin was then cured by an UV-initiated free-radical polymerization to fabricate a transparent (>90% at 550 nm) methacrylate–siloxane hybrid material (methacrylate hybrimer). An urethane butanediol dimethacrylate (UBDM) monomer was synthesized as a cross-linker into the methacrylate hybrimer networks without micro-phase separation. The UBDM increased methacrylate conversion and mechanical properties due to the hydrogen bonding of the urethane linkage. The hardness, modulus, and strength were improved by UBDM insertion, the flexibility was even increased with 140% elongation, compared to neat MH. In addition, a storage modulus related to the thermo-mechanical properties was also enhanced by a denser cross-linkage with the urethane linkage.

Highlights

  • UV-curable methacrylate phenyl oligo-siloxane and methacryalte hybrimer can be simply fabricated by non-hydrolytic sol-gel reaction and free-radical polymerization.

  • Urethane butandiol dimethacrylate (UBDM) can be synthesized by a simple reaction and the UBDM can be chemically connected with methacrylate hybrimer without micro-phase separation.

  • Incorporation of the urethane linkage considerably enhances methacrylate conversion, mechanical and thermo-mechanical properties of methacrylate polymer, compared to other cross-linkers

Keywords

Siloxane hybrid material Methacrylate hybrimer Urethane linkage Mechanical property Thermo-mechanical property 

Notes

Acknowledgements

This work was supported by the Wearable Platform Materials Technology Center (WMC) supported by a National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (NRF-2016R1A5A1009926). This work was also supported by a grant from the Korea Evaluation Institute of Industrial Technology (Project number: 10051337).

References

  1. 1.
    Sharp KG (1998) Adv Mater 10:1243CrossRefGoogle Scholar
  2. 2.
    Eo Y-J, Kim JH, Ko JH, Bae B-S (2005) J Mater Res 20:401CrossRefGoogle Scholar
  3. 3.
    Sanchez C, Julián B, Belleville P, Popall M (2005) J Mater Chem 15:3559CrossRefGoogle Scholar
  4. 4.
    Sanchez C, Lebeau B, Ribot F, In M (2000) J Sol-Gel Sci Technol 19:31CrossRefGoogle Scholar
  5. 5.
    Oliver MS, Dubois G, Sherwood M et al. (2010) Adv Funct Mater 20:2884CrossRefGoogle Scholar
  6. 6.
    Jin J, Ko J-H, Yang S, Bae B-S (2010) Adv Mater 22:4510CrossRefGoogle Scholar
  7. 7.
    Choi G-M, Jin J, Shin D et al. (2017) Adv Mater 29:1700205CrossRefGoogle Scholar
  8. 8.
    Oh J-H, Kwak S-Y, Yang S-C, Bae B-S (2010) ACS Appl Mater Interfaces 2:913CrossRefGoogle Scholar
  9. 9.
    Yang S, Kwak S-Y, Jin J, Bae B-S (2009) ACS Appl Mater Interfaces 1:1585CrossRefGoogle Scholar
  10. 10.
    Kim YH, Bae J-Y, Jin J, Bae B-S (2014) ACS Appl Mater Interfaces 6:3115CrossRefGoogle Scholar
  11. 11.
    Decker C (1996) Prog Polym Sci 21:593CrossRefGoogle Scholar
  12. 12.
    Jin J, Yang S, Bae B-S (2012) J Sol-Gel Sci Technol 61:321CrossRefGoogle Scholar
  13. 13.
    Kim YH, Lim Y-W, Lee D et al. (2016) J Mater Chem C 4:10791CrossRefGoogle Scholar
  14. 14.
    Ritchie RO (2011) Nat Mater 10:817CrossRefGoogle Scholar
  15. 15.
    Boyarchuk YM, Rappoport LY, Nikitin VN, Apukhtina NP (1965) Polym Sci USSR 7:859CrossRefGoogle Scholar
  16. 16.
    Yen Fu-Sen, Lieh-Li Lin A, Hong J-L (1999) Macromolecules 32:3068CrossRefGoogle Scholar
  17. 17.
    Majumdar P, Webster DC (2005) Macromolecules 38:5857CrossRefGoogle Scholar
  18. 18.
    Dzunuzovic JV, Pergal MV, Poreba R, Ostojic S, Lazic N, Spirkova M, Jovanovic S (2012) Ind Eng Chem Res 51:10824CrossRefGoogle Scholar
  19. 19.
    Lungu A, Sulca NM, Vasile E, Badea N, Parvu C, Iovu H (2011) J Appl Polym Sci 121:2919CrossRefGoogle Scholar
  20. 20.
    Jin J, Yang S, Bae B-S (2011) Polym Chem 2:168CrossRefGoogle Scholar
  21. 21.
    Bae J-Y, Yang S, Jin JH et al. (2011) J Sol-Gel Sci Technol 58:114CrossRefGoogle Scholar
  22. 22.
    Jung KH, Bae B-S (2008) J Appl Polym Sci 108:3169CrossRefGoogle Scholar
  23. 23.
    Stansbury JW, Dickens SH (2001) Dent Mater 17:71CrossRefGoogle Scholar
  24. 24.
    Kim YH, Choi G-M, Bae JG, Kim YH, Bae B-S (2018) Polymers 10:449CrossRefGoogle Scholar
  25. 25.
    Meredith HJ, Wilker JJ (2015) Adv Funct Mater 25:5057CrossRefGoogle Scholar
  26. 26.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  27. 27.
    Yang S, Jin J, Kwak S-Y, Bae B-S (2012) J Appl Polym Sci 126:E380CrossRefGoogle Scholar
  28. 28.
    Yang SC, Jin JH, Kwak S-Y, Bae B-S (2011) Macromol Res 19:1166CrossRefGoogle Scholar
  29. 29.
    Buruiana T, Melinte V, Jitaru F, Buruiana EC, Balan L (2012) Polym Chem 50:874CrossRefGoogle Scholar
  30. 30.
    Krakovsky I, Bubenikova Z, Urakawa H, Kajiwara K (1997) Polymer 38:3637CrossRefGoogle Scholar
  31. 31.
    Velankar S, Cooper SL (2000) Macromolecules 33:382CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Wearable Platform Materials Technology CenterKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea

Personalised recommendations