Journal of Sol-Gel Science and Technology

, Volume 90, Issue 1, pp 95–104 | Cite as

Sol–gel process and complex fluids: sculpting porous matter at various lengths scales towards the Si(HIPE), Si(PHIPE), and SBA-15-Si(HIPE) series

  • Armand Roucher
  • Véronique Schmitt
  • Jean-Luc Blin
  • Rénal BackovEmail author


Taking inspiration from diatom hierarchically organized porosity, synthetic porous monoliths have been synthesized through rational designs while combining sol–gel chemistry, emulsions, Pickering-based emulsions, and lyotropic mesophases. We have described the synthesis of the Si(HIPE) series employing traditional emulsions to tune the macroscopic void diameters and cationic surfactant molecules to both stabilize the oil/water interface at the macroscopic length scale and create vermicular poorly organized porosity at the mesoscopic length scale. In a second part, while substituting surfactant molecules with modified silica nanoparticles acting as emulsion-stabilizers, we depict the possibility of tuning independently the macroscopic cell diameters and the cell junctions via Pickering emulsions employed as templates, leading to the Si(PHIPE) series presenting both monodiperse macroscopic void and cell junction diameters. Finally taking the synergetic effect of nonionic surfactants and a kosmotrope salt effect we show that it is possible generating self-standing Si(HIPE) bearing high organized mesoporosity while addressing the SBA-15-Si(HIPE) series.

Taking inspiration from diatom hierarchically organized porosity, synthetic porous self-standing silica foams have been obtained through rational designs where sol–gel chemistry, emulsions, Pickering-based emulsions and lyotropic mesophases are advantageously combined.


  • Lyotropic mesophases, direct emulsions and sol–gel chemistry can be integrated toward the generation of self-standing foams where the macroscopic voids can be tuned while varying the starting emulsion volume fraction, addressing thereby the Si(HIPE) series.

  • Pickering-based emulsions can be employed to shape macrocellular foams bearing high monodisperse character of both macroscopic cells and cell junction diameters, each feature being tunable independently, generating thus the Si(PHIPE) series.

  • P123 nonionic surfactant, (NH4)2SO4 salt and direct emulsion are combined to generate self-standing monolith foams bearing a very high organization of the voids at the mesoscopic length, leading to the SBA-15-Si(HIPE) series.

  • Kosmotrope-Chaotrope balance is introduced in sol–gel chemistry as a tool to enhance silica polycondensation, beyond and additionally to the well-known salt screening and ionic strength effects.


Sol-gel process Emulsions Pickering emulsions Lyotropic mesophases Porous matter Integrative chemistry 



The work was financed by the ANR project n°ANR-15-CE07-0023: « Intensified & Sustainable Enzymatic Acylation Processes on Innovative Macroporous/Mesoporous Materials ».

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Livage J (1977) Vers une chimie écologique. Quand l’air et l’eau remplacent le pétrole, Le Monde: Paris, FranceGoogle Scholar
  2. 2.
    Brinker CJ, Scherrer GW (1990) The physics and chemistry of sol-gel processing. Academic, San DiegoGoogle Scholar
  3. 3.
    Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–342CrossRefGoogle Scholar
  4. 4.
    Mann S, Ozin GA (1996) Synthesis of inorganic materials with complex form. Nature 382:313–318CrossRefGoogle Scholar
  5. 5.
    Guyon E, Hulin JP, Petit L, Mitescu CD (2001) In physical hydrodynamics. Oxford University Press: New York, USAGoogle Scholar
  6. 6.
    Backov R (2006) Combining soft matter and soft chemistry: integrative chemistry towards designing novel and complex multiscale architectures. Soft Matter 2:452–464CrossRefGoogle Scholar
  7. 7.
    Faustini M, Grosso D, Boissière C, Backov R, Sanchez C (2014) “Integrative sol–gel chemistry”: A nanofoundry for materials science. J Sol-Gel Sci Technol 70:216–226CrossRefGoogle Scholar
  8. 8.
    Klemper D, Frisch KC (1991), Handbook of polymeric foams and foam technology. Oxford University Press: New York, USAGoogle Scholar
  9. 9.
    Rosa ME (2008) An introduction to solid foams. Philos Mag Lett 88:637–645CrossRefGoogle Scholar
  10. 10.
    S-T Lee, NS Ramesh (2009), Polymeric foams: Mechanisms and materials, 2nd edn. CRC Press, Boca Raton, FlGoogle Scholar
  11. 11.
    Nestor J, Vílchez A, Solans C, Esquena J (2013) Facile synthesis of meso/macroporous dual materials with ordered mesopores using highly concentrated emulsions based on a cubic liquid crystal. Langmuir 29:432–440CrossRefGoogle Scholar
  12. 12.
    Ceglia G, Mahéo L, Viot P, Bernard D, Chirazi A, Ly I, Mondain-Monval O, Schmitt V (2012) Formulation and mechanical properties of emulsion-based model polymer foams. Eur Phys J E 35:9708CrossRefGoogle Scholar
  13. 13.
    Quell A, Elsing J, Drenckhan W, Stubenrauch D (2015) Monodisperse polystyrene foams via microfluidics–A novel templating route. Adv Eng Mater 17:604–609CrossRefGoogle Scholar
  14. 14.
    Bancroft WD (1913) The theory of emulsification, V. J Phys Chem 17:501–519CrossRefGoogle Scholar
  15. 15.
    Barby D, Haq Z (1982) Eur Patent Appl 60138Google Scholar
  16. 16.
    Silverstein MS (2014) PolyHIPEs: recent advances in emulsion-templated porous polymers. Prog Polym Sci 39:199–234CrossRefGoogle Scholar
  17. 17.
    Silverstein MS (2017) Emulsion-templated polymers: Contemporary contemplations. Polym (Guildf) 126:261–282CrossRefGoogle Scholar
  18. 18.
    Araya A (1989) Hydrophobic, highly porous, three-dimensional inorganic structures. US Patent 4888309Google Scholar
  19. 19.
    Imhof A, Pine D (1997) Ordered macroporous materials by emulsion templating. Nature 389:948–951CrossRefGoogle Scholar
  20. 20.
    Carn F, Colin A, Achard MF, Deleuze H, Sellier E, Birot M, Backov R (2004) Inorganic monoliths hierarchically textured via concentrated direct emulsion and micellar templates. J Mat Chem 14:1370–1376CrossRefGoogle Scholar
  21. 21.
    Brun N, Julian-Lopez B, Hesemann P, Guillaume L, Achard MF, Deleuze H, Sanchez C, Backov R (2008) Eu3+@Organo-Si(HIPE) macro-mesocellular hybrid foams generation: syntheses, characterizations, and photonic properties. Chem Mater 20:7117–7129CrossRefGoogle Scholar
  22. 22.
    Ungureanu S, Birot M, Deleuze H, Babot O, Achard MF, Popa MI, Sanchez C, Backov R (2010) Palladium nanoparticles heterogeneous nucleation within organically grafted silica foams and their use as catalyst supports toward the Suzuki–Miyaura and Mizoroki–Heck coupling reactions. Appl Catal A 390:51–58CrossRefGoogle Scholar
  23. 23.
    Brun N, Babeau-Garcia A, Achard MF, Sanchez C, Durand F, Laurent G, Birot M, Deleuze H, Backov R (2011) Enzyme-based biohybrid foams designed for continuous flow heterogeneous catalysis and biodiesel production. Energy Environ Sci 4:2840–2844CrossRefGoogle Scholar
  24. 24.
    Roucher A, Morvan M, Pekin D, Depardieu M, Blin JL, Schmitt V, Baret JC, Backov R (2018) From compartmentalization of bacteria within inorganic macrocellular beads to the assembly of microbial consortia. Adv Biosys 2:1700233CrossRefGoogle Scholar
  25. 25.
    Ramsden W (1903) Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation).-preliminary account. Proc R Soc Lond 72:156–164Google Scholar
  26. 26.
    Pickering SU (1907) CXCVI. -emulsions. J Chem Soc, Trans 91:2001–2021CrossRefGoogle Scholar
  27. 27.
    Arditty S, Whitby CP, Binks BP, Schmitt V, Leal-Calderon F (2003) Some general features of limited coalescence in solid-stabilized emulsions. Eur Phys J E 11:273–281CrossRefGoogle Scholar
  28. 28.
    Destribats M, Faure B, Birot M, Babot O, Schmitt V, Backov R (2012) Tailored silica macrocellular foams: Combining limited coalescence‐based pickering emulsion and sol–gel process. Adv Funct Mater 22:2642–2654CrossRefGoogle Scholar
  29. 29.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843CrossRefGoogle Scholar
  30. 30.
    Di Renzo F, Cambon H, Dutartre R (1997) A 28-year-old synthesis of micelle-templated mesoporous silica. Microporous Mater 10:283–286CrossRefGoogle Scholar
  31. 31.
    Taguchi A, Schüth F (2005) Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater 77:1–45CrossRefGoogle Scholar
  32. 32.
    Davis EM (2002) Ordered porous materials for emerging applications. Nature 417:813–821CrossRefGoogle Scholar
  33. 33.
    Balas F, Manzano M, Horcajada P, Vallet-Regi M (2006) Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J Am Chem Soc 128:8116–8117CrossRefGoogle Scholar
  34. 34.
    Trewin BG, Slowing II, Giri S, Chen HT, Lin V (2007) Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc Chem Res 40:846–853CrossRefGoogle Scholar
  35. 35.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  36. 36.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552CrossRefGoogle Scholar
  37. 37.
    Bagshaw SA, Prouzet E, Pinnavaia TJ (1995) Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 269:1242–1244CrossRefGoogle Scholar
  38. 38.
    Tanev PT, Pinnavaia TJ (1995) A neutral templating route to mesoporous molecular sieves. Science 267:865–867CrossRefGoogle Scholar
  39. 39.
    Boissière C, Martines MAU, Tokumoto M, Larbot A, Prouzet E (2003) Mechanisms of pore size control in MSU-X mesoporous silica. Chem Mater 15:509–515CrossRefGoogle Scholar
  40. 40.
    Amatani T, Nakanishi K, Hirao K, Kodaira T (2005) Monolithic periodic mesoporous silica with well-defined macropores. Chem Mater 17:2114–2119CrossRefGoogle Scholar
  41. 41.
    Roucher A, Bentaleb A, Laurichesse E, Dourges MA, Emo M, Schmitt V, Blin JL, Backov R (2018) First macro-mesocellular silica SBA-15-Si(HIPE) monoliths: conditions for obtaining self-standing materials. Chem Mater 30:864–873CrossRefGoogle Scholar
  42. 42.
    Hofmeister F (1888) Zur Lehre von der Wirkung der Salze. Arch Exp Pathol Pharmacol 24:247–260CrossRefGoogle Scholar
  43. 43.
    Carn F, Colin A, Schmitt V, Leal-Calderon F, Backov R (2005) Soft matter, sol–gel process and external magnetic field to design macrocellular silica scaffolds. Colloid Surf A 263:341–346CrossRefGoogle Scholar
  44. 44.
    Schmidt-Winkel P, Yang P, Margolese DI, Chmelka BF, Stucky GD (1999) Fluoride-induced hierarchical ordering of mesoporous silica in aqueous acid-synthesis. Adv Mater 11:303–307CrossRefGoogle Scholar
  45. 45.
    Causse J, Tokarev A, Ravaux J, Moloney M, Barr Y, Grandjean A (2014) Facile one-pot synthesis of copper hexacyanoferrate nanoparticles functionalised silica monoliths for the selective entrapment of 137Cs. J Mater Chem A 2:9461–9464CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CRPP-UMR CNRS 5031, Université de BordeauxPessacFrance
  2. 2.Institut Jean Barriol, Laboratoire Lorrain de Chimie Moléculaire UMR CNRS 7053 L2CM, Université de Lorraine, Faculté des sciences et technologies, BP 70239Vandoeuvre lès Nancy cedexFrance
  3. 3.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations