Advertisement

Journal of Sol-Gel Science and Technology

, Volume 88, Issue 1, pp 163–171 | Cite as

Synthesis of highly efficient Co3O4 catalysts by heat treatment ZIF-67 for CO oxidation

  • Ning Liu
  • Mengqi Tang
  • Chuwen Jing
  • Wenyuan Huang
  • Pin Tao
  • Xiaodong Zhang
  • Jianqiu Lei
  • Liang Tang
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • 146 Downloads

Abstract

The present work reported the porous rhombic dodecahedral Co3O4 catalysts undergoing ZIF-67 calcination in air condition at different temperatures. The structural and textural properties of the obtained catalysts were fully characterized using scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption–desorption, and X-ray photoelectron spectroscopic (XPS). H2-temperature-programmed reduction (H2-TPR) was used to test their redox properties. Both surface structure and morphology of Co3O4 catalysts exhibited good correlation with their catalytic activity. The results demonstrated that the catalyst calcined at 500 °C (Co3O4-500) exhibited the best performance with respect to the complete CO conversion temperature at 115 °C. This finding was reproducible and tentatively attributed to the unique structure, higher amount of surface Co2+ and adsorbed oxygen species, and good low-temperature reduction behavior. Finally, the effect of water vapor on catalytic activity was also determined, which indicated that the addition of water vapor to the feedstock had a negative effect on CO conversion over Co3O4-500.

The porous Co3O4 catalysts was prepared through direct calcination of ZIF-67 at 500 °C.

Highlights

  • Porous rhombic dodecahedral Co3O4 was successfully prepared by heat treatment ZIF-67.

  • Co3O4-500 derived from heat treatment ZIF-67 at 500 °C exhibited best activity.

  • Surface Co2+ and adsorbed oxygen species played important roles in CO oxidation.

  • Co3O4-500 catalyst possessed excellent catalytic stability for CO oxidation.

Keywords

ZIF-67 Co3O4 MOFs CO oxidation 

Notes

Acknowledgements

This work was sponsored financially by the National Natural Science Foundation of China (nos. 41673093, 41473108, 41773128, 41573096, and 51508327).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2018_4784_MOESM1_ESM.doc (20.7 mb)
Supplementary Information

References

  1. 1.
    Weng XL, Sun PF, Long Y, Meng QJ, Wu ZB (2017) Environ Sci Technol 51:8057–8066.  https://doi.org/10.1021/acs.est.6b06585 CrossRefGoogle Scholar
  2. 2.
    Shen Q, Zhang LY, Sun NN, Wang H, Zhong LS, He C, Wei W, Sun YH (2017) Chem Eng J 322:46–55.  https://doi.org/10.1016/j.cej.2017.02.148 CrossRefGoogle Scholar
  3. 3.
    Yu YK, Miao JF, Wang JX, He C, Chen JS (2017) Catal Sci Technol 7:1590–1601.  https://doi.org/10.1039/c6cy02626e CrossRefGoogle Scholar
  4. 4.
    Pan H, Jian YF, Yu YK, He C, Shen ZX, Liu HX (2017) Appl Surf Sci 401:120–126.  https://doi.org/10.1016/j.apsusc.2016.12.201 CrossRefGoogle Scholar
  5. 5.
    Yang YQ, Dong H, Wang Y, Wang YX, Liu N, Wang DJ, Zhang XD (2018) Inorg Chem Commun 86:74–77.  https://doi.org/10.1016/j.inoche.2017.09.027 CrossRefGoogle Scholar
  6. 6.
    Yang XQ, Yu XL, Li MY, Ge MF, Zhao Y, Wang FY (2017) J Mater Chem A 5:13799–13806.  https://doi.org/10.1039/c7ta03888g CrossRefGoogle Scholar
  7. 7.
    He C, Jiang ZY, Ma M, Zhang XD, Douthwaite M, Shi JW, Hao ZP (2018) ACS Catal 8:4213–4229.  https://doi.org/10.1021/acscatal.7b04461 CrossRefGoogle Scholar
  8. 8.
    Wang Y, Wang JY, Du BB, Wang Y, Xiong Y, Yang YQ, Zhang XD (2018) Appl Surf Sci 439:475–487.  https://doi.org/10.1016/j.apsusc.2017.12.196 CrossRefGoogle Scholar
  9. 9.
    Huang WY, Jing CW, Zhang XD, Lei JQ, Wu MH, Tang L, Liu N (2018) Chem Eng J 349:603–612.  https://doi.org/10.1016/j.cej.2018.05.121 CrossRefGoogle Scholar
  10. 10.
    Zou XJ, Dong YY, Zhang XD, Cui YB (2016) Appl Surf Sci 366:173–180.  https://doi.org/10.1016/j.apsusc.2016.01.034 CrossRefGoogle Scholar
  11. 11.
    Chakrabarty S, Das T, Banerjee P, Thapa R, Das GP (2017) Appl Surf Sci 418:92–98.  https://doi.org/10.1016/j.apsusc.2017.01.144 CrossRefGoogle Scholar
  12. 12.
    Zhang XD, Dong H, Wang Y, Liu N, Zuo YH, Cui LF (2016) Chem Eng J 283:1097–1107.  https://doi.org/10.1016/j.cej.2015.08.064 CrossRefGoogle Scholar
  13. 13.
    Wu C, Zhan WC, Wang JL, Wang HF, Zhang JS, Liu XF, Zhang PF, Chi MF, Guo YL, Guo Y, Lu GZ (2017) J Am Chem Soc 139:8846–8854.  https://doi.org/10.1021/jacs.7b01784 CrossRefGoogle Scholar
  14. 14.
    Zhang XD, Yang Y, Song L, Wang YX, He C, Wang Z, Cui LF (2018) Mol Catal 447:80–89.  https://doi.org/10.1016/j.mcat.2018.01.007 CrossRefGoogle Scholar
  15. 15.
    Zhang XD, Dong H, Gu ZJ, Wang G, Zuo YH, Wang YG, Cui LF (2015) Chem Eng J 269:94–104.  https://doi.org/10.1016/j.cej.2015.01.085 CrossRefGoogle Scholar
  16. 16.
    Zhang XD, Yang Y, Hou FL, Lv XT, Wang YX, Cui LF (2017) Catalysts 7(382):1–13.  https://doi.org/10.3390/catal7120382 CrossRefGoogle Scholar
  17. 17.
    Yang YQ, Hou FL, Li HX, Liu N, Wang Y, Zhang XD (2017) J Porous Mat 24:1661–1665.  https://doi.org/10.1007/s10934-017-0406-1 CrossRefGoogle Scholar
  18. 18.
    Zhang XD, Li HX, Hou FL, Yang Y, Dong H, Liu N, Wang YX, Cui LF (2017) Appl Surf Sci 411:27–33.  https://doi.org/10.1016/j.apsusc.2017.03.179 CrossRefGoogle Scholar
  19. 19.
    Zhang XD, Li HX, Yang Y, Zhang TT, Wen X, Liu N, Wang DJ (2017) J Environ Chem Eng 5:5179–5186.  https://doi.org/10.1016/j.jece.2017.09.059 CrossRefGoogle Scholar
  20. 20.
    Cui LF, Zhao D, Yang Y, Wang YX, Zhang XD (2017) J Solid State Chem 247:168–172.  https://doi.org/10.1016/j.jssc.2017.01.013 CrossRefGoogle Scholar
  21. 21.
    Zhan WC, Yang SZ, Zhang PF, Guo YL, Lu GZ, Chisholm MF, Dai S (2017) Chem Mater 29:7323–7329.  https://doi.org/10.1021/acs.chemmater.7b02206 CrossRefGoogle Scholar
  22. 22.
    Zhang XD, Li HX, Lv XT, Xu JC, Wang YX, He C, Liu N, Yang YQ, Wang Y (2018) Chem Eur J 24:8822–8832.  https://doi.org/10.1002/chem.201800773 CrossRefGoogle Scholar
  23. 23.
    Zhang XD, Hou FL, Li HX, Yang Y, Wang YX, Liu N, Yang YQ (2018) Micro Meso Mater 259:211–219.  https://doi.org/10.1016/j.micromeso.2017.10.019 CrossRefGoogle Scholar
  24. 24.
    Yang YQ, Dong H, Wang Y, He C, Wang YX, Zhang XD (2018) J Solid State Chem 258:582–587.  https://doi.org/10.1016/j.jssc.2017.11.033 CrossRefGoogle Scholar
  25. 25.
    Yu FL, Qu ZP, Zhang XD, Fu Q, Wang Y (2013) J Energy Chem 22:845–852.  https://doi.org/10.1016/S2095-4956(14)60263-1 CrossRefGoogle Scholar
  26. 26.
    Liu N, Huang WY, Zhang XD, Tang L, Wang L, Wang YX, Wu MH (2018) Appl Catal B 221:119–128.  https://doi.org/10.1016/j.apcatb.2017.09.020 CrossRefGoogle Scholar
  27. 27.
    Huang WY, Liu N, Zhang XD, Wu MH, Tang L (2017) Appl Surf Sci 425:107–116.  https://doi.org/10.1016/j.apsusc.2017.07.050 CrossRefGoogle Scholar
  28. 28.
    Zhang XD, Yang Y, Huang WY, Yang YQ, Wang YX, He C, Liu N, Wu MH, Tang L (2018) Mater Res Bull 99:349–358.  https://doi.org/10.1016/j.materresbull.2017.11.028 CrossRefGoogle Scholar
  29. 29.
    Qin J, Wang S, Wang X (2017) Appl Catal B 209:476–482.  https://doi.org/10.1016/j.apcatb.2017.03.018 CrossRefGoogle Scholar
  30. 30.
    Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O'Keeffe M, Yaghi OM (2006) Proc Natl Acad Sci USA 103:10186–10191.  https://doi.org/10.1073/pnas.0602439103 CrossRefGoogle Scholar
  31. 31.
    Wu CS, Xiong ZH, L C, Zhang JM (2015) RSC Adv 5:82127–82137.  https://doi.org/10.1039/c5ra15497a CrossRefGoogle Scholar
  32. 32.
    Wang N, Du C, Long R, Xiong Y (2017) Nano Res 10(9):3228–3237.  https://doi.org/10.1007/s12274-017-1611-6 CrossRefGoogle Scholar
  33. 33.
    Krokidas P, Castier M, Moncho S, Sredojevic DN, Brothers EN, Kwon HT, Jeong HK, Lee JS, Economou IG (2016) J Phys Chem C 120(15):8116–8124.  https://doi.org/10.1021/acs.jpcc.6b00305 CrossRefGoogle Scholar
  34. 34.
    Lin KY, Lee WD (2016) Chem Eng J 284:1017–1027.  https://doi.org/10.1016/j.cej.2015.09.075 CrossRefGoogle Scholar
  35. 35.
    Zheng F, He M, Yang Y, Chen Q (2015) Nanoscale 7(8):3410–3417.  https://doi.org/10.1039/c4nr06321j CrossRefGoogle Scholar
  36. 36.
    Wang F, Zhang L, Xu L, Deng Z, Shi W (2017) Fuel 203:419–429.  https://doi.org/10.1016/j.fuel.2017.04.140 CrossRefGoogle Scholar
  37. 37.
    Deng S, Xiao X, Xing X, Wu J, Wen W, Wang Y (2015) J Mol Catal A Chem 398:79–85.  https://doi.org/10.1016/j.molcata.2014.11.021 CrossRefGoogle Scholar
  38. 38.
    Liotta LF, Wu H, Pantaleo G, Venezia AM (2013) Catal Sci Technol 3:3085–3102.  https://doi.org/10.1039/c3cy00193h CrossRefGoogle Scholar
  39. 39.
    Tang CW, Yu WY, Lin CJ, Wang CB, Chien SH (2007) Catal Lett 116(3–4):161–166.  https://doi.org/10.1007/s10562-007-9105-x CrossRefGoogle Scholar
  40. 40.
    Baidya T, Murayama T, Bera P, Safonova OV, Steiger P, Katiyar NK, Biswas K, Haruta M (2017) J Phys Chem C 121(28):15256–15265.  https://doi.org/10.1021/acs.jpcc.7b04348 CrossRefGoogle Scholar
  41. 41.
    Tripathy SK, Christy M, Park N-H, Suh E-K, Anand S, Yu Y-T (2008) Mater Lett 62(6–7):1006–1009.  https://doi.org/10.1016/j.matlet.2007.07.037 CrossRefGoogle Scholar
  42. 42.
    Cai T, Huang H, Deng W, Dai Q, Liu W, Wang X (2015) Appl Catal B 166–167:393–405.  https://doi.org/10.1016/j.apcatb.2014.10.047 CrossRefGoogle Scholar
  43. 43.
    Li J, Lu G, Wu G, Mao D, Guo Y, Wanga Y, Yun G (2014) Catal Sci Technol 4:1268–1275.  https://doi.org/10.1039/c3cy01004j CrossRefGoogle Scholar
  44. 44.
    Lin MY, Yu XL, Yang XQ, Li KZ, Ge MF, Li JH (2017) Catal Sci Technol 7:1573–1580.  https://doi.org/10.1039/c7cy00154a CrossRefGoogle Scholar
  45. 45.
    Pan H, Jian YF, Chen CW, He C, Hao ZP, Liu HX, Shen ZX (2017) Catal Sci Technol 51:6288–6297.  https://doi.org/10.1021/acs.est.7b00136 CrossRefGoogle Scholar
  46. 46.
    Meng DM, Xu Q, Jiao YL, Guo Y, Guo YL, Wang L, Lu GZ, Zhan WC (2018) Appl Catal B 221:652–663.  https://doi.org/10.1016/j.apcatb.2017.09.034 CrossRefGoogle Scholar
  47. 47.
    Sun PF, Wang WL, Da XX, Weng XL, Wu ZB (2016) Appl Catal B 198:389–397.  https://doi.org/10.1016/j.apcatb.2016.05.076 CrossRefGoogle Scholar
  48. 48.
    Am HuZ, Qiu S, You Y, Guo Y, Guo YL, Wang L, Zhan WC, Lu GZ (2018) Appl Catal B 225:110–120.  https://doi.org/10.1016/j.apcatb.2017.08.068 CrossRefGoogle Scholar
  49. 49.
    Zhan WC, Shu Y, Sheng YJ, Zhu HY, Guo YL, Wang L, Guo Y, Zhang JS, Lu GZ, Dai S (2017) Angew Chem Int Ed Engl 56:4494–4498.  https://doi.org/10.1002/anie.201701191 CrossRefGoogle Scholar
  50. 50.
    Zhan WC, He Q, Liu XF, Guo YL, Wang YQ, Wang L, Guo Y, Borisevich AY, Zhang JS, Lu GZ (2016) J Am Chem Soc 138:16130–16139.  https://doi.org/10.1021/jacs.6b10472 CrossRefGoogle Scholar
  51. 51.
    Zhang XD, Hou FL, Yang Y, Wang YX, Liu N, Chen DY, Yang Q (2017) Appl Surf Sci 423:771–779.  https://doi.org/10.1016/j.apsusc.2017.06.235 CrossRefGoogle Scholar
  52. 52.
    Zheng F, Yin Z, Xu S, Zhang Y (2016) Mater Lett 182:214–217.  https://doi.org/10.1016/j.matlet.2016.06.108 CrossRefGoogle Scholar
  53. 53.
    Zhang C, Zhang L, Xu GC, Ma X, Li YH, Zhang CY, Jia DZ (2017) New J Chem 41:1631–1636.  https://doi.org/10.1039/c6nj02507b CrossRefGoogle Scholar
  54. 54.
    Yan N, Chen Q, Wang F, Wang Y, Zhong H, Hua L (2012) Mater Chem A 1(3):637–643.  https://doi.org/10.1039/c2ta00132b CrossRefGoogle Scholar
  55. 55.
    Yu YB, Takei T, Ohashi H, He H, Zhang XL, Haruta M (2009) J Catal 267:121–128.  https://doi.org/10.1016/j.jcat.2009.08.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Environment and ArchitectureUniversity of Shanghai for Science and TechnologyShanghaiChina
  2. 2.Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiChina
  3. 3.School of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina

Personalised recommendations