Advertisement

Journal of Sol-Gel Science and Technology

, Volume 88, Issue 1, pp 192–201 | Cite as

Biofilm formed from a tri-ureasil organic−inorganic hybrid gel for use as a cubebin release system

  • Natana A. M. de Jesus
  • Anna H. P. de Oliveira
  • Denise C. Tavares
  • Ricardo A. Furtado
  • Marcio L. A. de Silva
  • Wilson R. Cunha
  • Eduardo F. Molina
Original Paper: Sol−gel and hybrid materials for biological and health (medical) applications
  • 47 Downloads

Abstract

In this work, we report the effects of catalyst amount on a tri-ureasil hybrid gel prepared by the sol−gel route, with the aim of controlling the film-forming time. Investigation of the key properties of biofilms produced from the hybrid gels revealed that varying the amount of acid catalyst could tune the film-forming time, without changing the structural features of the thin and transparent films. Independent of catalyst amount, springthe films presented low toxicity towards cells, indicating their suitability for use as new transdermal drug delivery systems. Due to the hydrophobic nature of the polyoxypropylene (PPO polyether chains) present in the hybrid films, very low water uptake was observed. This characteristic could be advantageous, since materials that show high swelling behavior can cause inflammatory responses in cells. The hybrid film with incorporation of a bioactive agent (cubebin, isolated from Piper cubeba seeds) was evaluated as a drug delivery system. Release of the drug from the matrix displayed a two-step pattern, kinetically controlled by (i) slow diffusion of cubebin molecules, and (ii) fast diffusive mass transport created by the solute−solvent interaction. The release of cubebin from the tri-ureasil hybrid film could be employed for radical scavenging and for the treatment of diseases such as cancer, leishmaniasis, and trypanosomiasis.

Highlights

  • Tri-ureasil hybrid presents the film-forming properties in the fabrication of highly functional materials.

  • The biofilms showed remarkable hydrophobicity, transparency, flexibility, and easy processability.

  • The correlation between swelling assays and the wettability of the surface revealed key aspects of the release of a bioactive lignin.

  • Hybrid biofilms could be useful for trypanocidal, analgesic, anti-inflammatory, antimutagenic, and chemotherapeutic purposes.

  • A promising new platform for biofilm formation and as a vehicle for transdermal drug delivery system.

Keywords

Tri-ureasil organic−inorganic hybrid Film-forming gel Cubebin Drug release 

Notes

Acknowledgements

The authors are grateful for financial support provided by the Brazilian agencies CAPES, CNPq, and FAPESP (grants no. 2014/18876-2 and no. 2013/20455-2). We would like to thank Huntsman Performance Products for donating the Jeffamine® reagents, and Celso V. Santilli and Sandra H. Pulcinelli for allowing us to use their laboratory facilities (IQ-UNESP/Araraquara) during the contact angle measurements.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standards

This manuscript has not been published previously and is not under consideration for publication elsewhere. All co-authors have approved this version of the manuscript.

References

  1. 1.
    Zea Bermudez V, Carlos LD, Alcácer L (1999) Chem Mater 11:569–580CrossRefGoogle Scholar
  2. 2.
    Molina EF, Pulcinelli SH, Santilli CV, Briois V (2012) J Phys Chem B 116:7931–7939CrossRefGoogle Scholar
  3. 3.
    Molina EF, Jesus CRN, Chiavacci LA, Briois V, Santilli CV (2014) J Sol-Gel Sci Technol 70:317–328CrossRefGoogle Scholar
  4. 4.
    Nolasco MM, Vaz PM, Freitas VT, Lima PP, André PS, Ferreira RAS, Vaz PD, Ribeiro-Claro P, Carlos LD (2013) J Mater Chem A 1:7339–7350CrossRefGoogle Scholar
  5. 5.
    Moura AL, Oliveira LK, Ciuffi KJ, Molina EF (2015) J Mater Chem A 3:16020–16032CrossRefGoogle Scholar
  6. 6.
    Chaker JA, Santilli CV, Pulcinelli SH, Dahmouche K, Briois V, Judeinstein P (2007) J Mater Chem 17:744–757CrossRefGoogle Scholar
  7. 7.
    Molina EF, Pulcinelli SH, Briois V, Santilli CV (2014) Polym Chem 5:1897–1904CrossRefGoogle Scholar
  8. 8.
    Brinker J, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, Boston, MA, p 908.Google Scholar
  9. 9.
    Sanchez C, Belleville P, Popall M, Nicole L (2011) Chem Soc Rev 40:696–753CrossRefGoogle Scholar
  10. 10.
    Junior JAO, Carvalho FC, Soares CP, Chorilli M, Chiavacci LA (2015) Int J Polym Sci 2015:1−7Google Scholar
  11. 11.
    Souza LK, Bruno CH, Lopes L, Pulcinelli SH, Santilli CV, Chiavacci LA (2013) Colloids Surf B Biointerfaces 101:156–161CrossRefGoogle Scholar
  12. 12.
    Junior JAO, Mortari GR, Freitas RM, Junior EM, Lopes L, Spolidorio LC, Marcantonio RA, Chiavacci LA (2016) Int J Polym Mater Polym Biomater 65:647–652CrossRefGoogle Scholar
  13. 13.
    Gal A, Nussinovich A (2009) Int J Pharm 370:103–109CrossRefGoogle Scholar
  14. 14.
    Lue SJ, Lee DT, Chen JY, Chiu CH, Hu CC, Jean YC, Lai JY (2008) J Membr Sci 325:831–839CrossRefGoogle Scholar
  15. 15.
    Prabhu BR, Mulchandani NB (1985) Phytochem 24:329–331CrossRefGoogle Scholar
  16. 16.
    Parmar VS, Jain SC, Bisht KS, Jain R, Taneja P, Jha A, Tyagi OD, Prasad AK, Wengel J, Olsen CE, Boll PM (1997) Phytochem 46:597–673CrossRefGoogle Scholar
  17. 17.
    Borsato MLC, Grael CFF, Souza GEP, Lopes NP (2000) Analgesic activity of the lignans from Lychnophora ericoides. Phytochem 55:809–813CrossRefGoogle Scholar
  18. 18.
    Carvalho MT, Rezende KC, Evora PR, Bastos JK, Cunha WR, Andrade e Silva ML, Celotto AC (2013) Phytother Res 27:1784–1789CrossRefGoogle Scholar
  19. 19.
    Molina EF, Marçal L, Carvalho HWP, Nassar EJ, Ciuffi KJ (2013) Polym Chem 4:1575–1582CrossRefGoogle Scholar
  20. 20.
    Caravieri BB, Oliveira PF, Furtado RA, Tavares DC, Nassar EJ, Ciuffi KJ, Molina EF (2014) J Sol-Gel Sci Technol 72:627–636CrossRefGoogle Scholar
  21. 21.
    Souza VA, Silva R, Pereira AC, Royo VA, Saraiva J, Montanheiro M, Souza GHB, Filho AAS, Grando MD, Donate PM, Bastos JK, Albuquerque S, Silva MLA (2005) Bioorg Med Chem Lett 15:303–307CrossRefGoogle Scholar
  22. 22.
    ISO 10993-12 (2007). International Standard Organization. Biological evaluation of medicinal devices. Sample preparation and reference materialsGoogle Scholar
  23. 23.
    ISO 10993-5 (2009). International Standard Organization. Biological evaluation of medicinal devices. Test for in vitro cytotoxicityGoogle Scholar
  24. 24.
    Berridge MV, Herst PM, Tan AS (2005) Biotechnol Annu Rev 11:127–152CrossRefGoogle Scholar
  25. 25.
    Bernas T, Dobrucki J (1999) Biochim Biophys Acta 1451:73–81CrossRefGoogle Scholar
  26. 26.
    Santilli CV, Chaiavacci LA, Lopes L, Pulcinelli SH, Oliveira AG (2009) Chem Mater 21:463–467CrossRefGoogle Scholar
  27. 27.
    Howe J (1993) Int Mater Rev 38:233–256CrossRefGoogle Scholar
  28. 28.
    Schroeder IZ, Franke P, Schaefer UF, Lehr CM (2007) Eur J Pharm Biopharm 65:111–121CrossRefGoogle Scholar
  29. 29.
    Freitas VT, Lima PP, de Zea Bermudez V, Ferreira RAS, Carlos LD (2012) Eur J Inorg Chem 2012:5390–5395Google Scholar
  30. 30.
    Pereira RFP, Nunes SC, Toquer G, Cardoso MA, Valente AJM, Ferro MC, Silva MM, Carlos LD, Ferreira RAS, de Zea Bermudez V (2018) Front Chem 5:131CrossRefGoogle Scholar
  31. 31.
    Carlos LD, Zea Bermudez V, Ferreira RAS, Marques L, Assunção M (1999) Chem Mater 11:581–588CrossRefGoogle Scholar
  32. 32.
    Nunes SC, Zea Bermudez V, Silva MM, Smith MJ, Ostrovskii D, Ferreira RAS, Carlos LD, Rocha J, Gonçalves A, Fortunato E (2007) J Mater Chem 17:4239–4248CrossRefGoogle Scholar
  33. 33.
    Nunes SC, Zea Bermudez V, Ostrovskii D, Barbosa PC, Silva MM, Smith MJ (2008) Chem Phys 345:32–40CrossRefGoogle Scholar
  34. 34.
    Matsuura H, Miyazawa T (1969) J Polym Sci 7:1735–1744Google Scholar
  35. 35.
    Farris S, Introzzi L, Biagioni P, Holz T, Schiraldi A, Piergiovanni L (2011) Langmuir 27:7563–7574CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Natana A. M. de Jesus
    • 1
  • Anna H. P. de Oliveira
    • 1
  • Denise C. Tavares
    • 1
  • Ricardo A. Furtado
    • 1
  • Marcio L. A. de Silva
    • 1
  • Wilson R. Cunha
    • 1
  • Eduardo F. Molina
    • 1
  1. 1.Universidade de FrancaFrancaBrazil

Personalised recommendations