Advertisement

Journal of Sol-Gel Science and Technology

, Volume 88, Issue 1, pp 202–210 | Cite as

Role of cetyltrimethyl ammonium bromide on sol–gel preparation of porous cerium titanate photocatalyst

  • Wenjie Zhang
  • Yinghao Dong
  • Yanwen Zhou
  • Jing Li
  • Xuan Xiao
  • Chuanguo Li
Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • 69 Downloads

Abstract

Cetyltrimethyl ammonium bromide (CTAB) was used as template agent to prepare porous cerium titanate by sol–gel method. Besides major brannerite CeTi2O6 in monoclinic system, the addition of CTAB template leads to formation of minor anatase TiO2 and CeO2 phases. FT-Far-IR spectra also prove Ce-O and Ti-O-Ti bonds in the porous cerium titanate. The addition of CTAB template in the precursor can obviously enlarge BET surface area and pore volume of cerium titanate. Removal of CTAB template during calcination leaves mesoporous structure in the cerium titanate samples, which are presented in the N2 adsorption-desorption isotherms. Not only more hydroxyl radicals can be produced on the samples obtained using CTAB, but also photocatalytic oxidation efficiency is strongly influenced by the variation of CTAB amount. The reaction rate constant is 2.44 × 10−2 min-1 on the porous cerium titanate sample obtained using 2 g CTAB, while the reaction rate constant is only 9.60 × 10−3 min-1 on the sample without CTAB. UV-Visible spectra of ofloxacin solution during photocatalytic oxidation demonstrate the degradation of typical organic groups in ofloxacin molecule.

CTAB was used as template agent to prepare porous cerium titanate by sol–gel method. CTAB can introduce porous structure and enhance surface area of the samples. More hydroxyl radicals can be produced on the samples using CTAB as template. Photocatalytic oxidation efficiency is strongly affected by the variation of CTAB dosage.

Highlights

  • CTAB was used as template agent to prepare porous cerium titanate by sol–gel method.

  • CTAB can introduce porous structure and enhance surface area of cerium titanate.

  • The addition of CTAB may cause production of TiO2 and CeO2.

  • More hydroxyl radicals can be produced on the samples using CTAB as template.

  • Photocatalytic oxidation efficiency is strongly affected by the variation of CTAB dosage.

Keywords

Cerium titanate Photocatalysis Cetyltrimethyl ammonium bromide Ofloxacin Degradation 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51672119, 51474125).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hoffmann MR, Martin ST, Choi W, Bahnemann W (1995) Chem Rev 95:69–96CrossRefGoogle Scholar
  2. 2.
    Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobio C 1:1–21CrossRefGoogle Scholar
  3. 3.
    Zhang W, Liu Y, Li C (2017) J Phys Chem Solids 118:144–149CrossRefGoogle Scholar
  4. 4.
    Zhu Z, Huo P, Lu Z, Yan Y, Liu Z, Shi W, Li C, Dong H (2018) Chem Eng J 331:615–625CrossRefGoogle Scholar
  5. 5.
    Sharma G, Bhogal S, Naushad M, Kumar A, Stadler FJ (2017) J Photochem Photobio A Chem 347:235–243CrossRefGoogle Scholar
  6. 6.
    Panthi G, Yousef A, Barakat NAM, Khalil KA, Akhter S, Choi YR, Kim HY (2013) Ceram Inter 39:2239–2246CrossRefGoogle Scholar
  7. 7.
    Li Z, Qi M, Tu C, Wang W, Chen J, Wang AJ (2017) Appl Surf Sci 425:765–775CrossRefGoogle Scholar
  8. 8.
    Pang D, Qiu L, Wang Y, Zhu R, Ouyang F (2015) J Environ Sci 33:169–178CrossRefGoogle Scholar
  9. 9.
    Plantard G, Janin T, Goetz V, Brosillon S (2012) Appl Catal B: Environ 115–116:38–44CrossRefGoogle Scholar
  10. 10.
    Zhang W, Li C, Ma Z, Yang L, He H (2016) J Adv Oxid Technol 19:119–124Google Scholar
  11. 11.
    Zhang WJ, Ma Z, Du L, Yang LL, Chen XJ, He HB (2017) J Alloy Compds 695:3541–3546CrossRefGoogle Scholar
  12. 12.
    Li F, Yu K, Lou L, Su Z, Liu S (2010) Mater Sci Eng B 172:136–141CrossRefGoogle Scholar
  13. 13.
    Chen J, Liu S, Zhang L, Chen N (2015) Mater Lett 150:44–47CrossRefGoogle Scholar
  14. 14.
    Chen Z, Jiang H, Jin W, Shi C (2016) Appl Catal B Environ 180:698–706CrossRefGoogle Scholar
  15. 15.
    Lozano-Sánchez LM, Obregón S, Díaz-Torres LA, Lee S, Rodríguez-González V (2015) J Mol Catal A Chem 410:19–25CrossRefGoogle Scholar
  16. 16.
    Abe R, Higashi M, Sayama K, Abe Y, Sugihara H (2006) J Phys Chem B 110:2219–2226CrossRefGoogle Scholar
  17. 17.
    Xue H, Zhang YW, Xu J, Liu XP, Qian QR, Xiao L, Chen Q (2014) Catal Commun 51:72–76CrossRefGoogle Scholar
  18. 18.
    Verma A, Goyal A, Sharma RK (2008) Thin Solid Films 516:4925–4933CrossRefGoogle Scholar
  19. 19.
    Otsuka-Yao-Matsuo S, Omata T, Yoshimura M (2004) J Alloy Compds 376:262–267CrossRefGoogle Scholar
  20. 20.
    Zhang W, Tao Y, Li C (2018) Solid State Sci 78:16–21CrossRefGoogle Scholar
  21. 21.
    Chang H, Jo E, Jang H, Kim T (2013) Mater Lett 92:202–205CrossRefGoogle Scholar
  22. 22.
    Wang H, Du L, Yang L, Zhang W, He H (2016) J Adv Oxid Technol 19:366–371Google Scholar
  23. 23.
    Otsuka-Yao-Matsuo S, Omata T, Yoshimura M (2004) J Alloy Compd 376:262–267CrossRefGoogle Scholar
  24. 24.
    Verma A, Srivastava AK, Sood KN (2007) Solid State Ion 178:1288–1296CrossRefGoogle Scholar
  25. 25.
    Zhang WJ, Liu Y, Pei X, Chen XJ (2017) J Phys Chem Solids 104:45–51CrossRefGoogle Scholar
  26. 26.
    Kong L, Gregg DJ, Karatchevtseva I, Zhang Z, Blackford MG, Middleburgh SC, Lumpkin GR, Triani G (2014) Cheminform 45:6761–6768Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wenjie Zhang
    • 1
  • Yinghao Dong
    • 1
  • Yanwen Zhou
    • 2
  • Jing Li
    • 2
  • Xuan Xiao
    • 1
  • Chuanguo Li
    • 1
  1. 1.School of Environmental and Chemical EngineeringShenyang Ligong UniversityShenyangChina
  2. 2.Surface Engineering InstituteUniversity of Science and Technology LiaoningLiaoningChina

Personalised recommendations