Advertisement

Journal of Sol-Gel Science and Technology

, Volume 86, Issue 3, pp 675–681 | Cite as

An optical catechol biosensor based on a desert truffle tyrosinase extract immobilized into a sol–gel silica layered matrix

  • Saida Leboukh
  • Hicham GouziEmail author
  • Thibaud CoradinEmail author
  • Harek Yahia
Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications

Abstract

An optical biosensor for the determination of catechol, a widely used yet toxic and carcinogenic molecule, is proposed using a crude extract of desert truffle (Terfezia leonis Tul.) as an enzymatic source of tyrosinase. The biosensor is constructed by the immobilization of tyrosinase crude extract in a bi-layered silica gel film prepared by dip-coating of an alkoxide/colloidal silica solution containing the enzyme on glass slide. Encapsulation has a moderate effect of the enzyme optimal pH stability but largely increases its thermal stability. Immobilized enzymes have a higher substrate affinity towards catechol but smaller maximum conversion velocity. The optical biosensor provides a linear response for catechol in the concentration range of 50–400 µM and a limit of detection was 52 µM. AFM studies show that the enzymes impact on the silica gel structure, preventing further deposition of additional layers. Comparison with similar dopamine biosensors points out that the impact of encapsulation on enzymatic activity may depend on the considered substrate.

Highlights

  • A crude extract of desert truffle was immobilized in a bi-layered silica film

  • Thermal stability of the tyrosinase activity for catechol was improved by encapsulation

  • The performances of the bio-doped film as an optical biosensor for catechol were studied

  • The impact of sol-gel encapsulation on enzymes may depend on the considered substrate

Keywords

Optical Biosensor Tyrosinase Bioencapsulation Silica Catechol 

Notes

Acknowledgements

The authors thank Dr Marco Faustini and Dr Christophe Depagne (LCMCP) for AFM experiments and Dr. Cédric Boissière (LCMCP) for ellipsometry analysis. We would also like to thank Pr. Aziz Amine for her careful proofreading and copy-editing for grammar.

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

  1. 1.
    Subramanyan R, Mishra IM (2007) Chemosphere 69:816–824CrossRefGoogle Scholar
  2. 2.
    Toxics Release Inventory Basis of OSHA Carcinogens, United States Environmental Protection Agency, Technical Update (2015)Google Scholar
  3. 3.
    Tsai HC, Whang CW (1999) Electrophoresis 20:2533–2538CrossRefGoogle Scholar
  4. 4.
    Xie T, Liu Q, Shi Y, Liu Q (2006) J Chromatogr A 1109:317–321CrossRefGoogle Scholar
  5. 5.
    Lakshmi D, Bossi A, Whitcombe MJ, Cianella I, Fowler SA, Subrahmanyam S, Piletska EV, Piletsky SA (2009) Anal Chem 81:3576–3584CrossRefGoogle Scholar
  6. 6.
    Wang Y, Li Y, Bao X, Han J, Xia J, Tian X, Ni L (2016) Talanta 160:195–204Google Scholar
  7. 7.
    Rodriguez-Delgado MM, Aleman-Nava S, Rodriguez-Delgado JM, Dieck-Assad G, Martinez-Chapa SO, Barcelo D, Parra R (2015) TrAC 74:21–45Google Scholar
  8. 8.
    Uchiyama S, Hasebe Y, Shimizu H, Ishihara S (1993) Anal Chim Acta 276:341–345CrossRefGoogle Scholar
  9. 9.
    Sapelnikova s, Dock E, Ruzgas T, Emneus J (2003) Talanta 61:473–483CrossRefGoogle Scholar
  10. 10.
    Karim MN, Lee JE, Lee HJ (2014) Biosen Biolectron 61:147–151CrossRefGoogle Scholar
  11. 11.
    Vicentini FC, Garcia LLC, Figueiredo-Filho LCS, Janegitz BC, Fatibello-Filho O (2016) Enzym Microb Technol 84:17–23CrossRefGoogle Scholar
  12. 12.
    Zaidi KU, Ali AS, Naaz I (2014) Biochem Res Int 2014:ID 854687CrossRefGoogle Scholar
  13. 13.
    Fiorentino D, Gallone A, Fiocco D, Palazzo G, Mallardi A (2010) Biosens Bioelectron 25:2033–2037CrossRefGoogle Scholar
  14. 14.
    Hernandez K, Fernandez-Lafuente R (2011) Enzym Microb Technol 48:107–122CrossRefGoogle Scholar
  15. 15.
    Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Biotechnol Adv 30:489–511CrossRefGoogle Scholar
  16. 16.
    Homaei AA, Sariri R, Vianello F, Stevanato R (2013) J Chem Biol 6:185–205CrossRefGoogle Scholar
  17. 17.
    Pospisilova M, Kuncova G, Trögl J (2015) Sensors 15:25208–25259CrossRefGoogle Scholar
  18. 18.
    Livage J, Coradin T, Roux C (2001) J Phys Condens Matter 13:R673–691CrossRefGoogle Scholar
  19. 19.
    Pierre AC (2004) Biocatal Biotransformation 22:145–170CrossRefGoogle Scholar
  20. 20.
    Avnir D, Coradin T, Lev O, Livage J (2006) J Mater Chem 16:1013–1030CrossRefGoogle Scholar
  21. 21.
    Kandimalla VB, Trpathi VS, Ju H (2006) Crit Rev Anal Chem 36:73–106CrossRefGoogle Scholar
  22. 22.
    David AE, Yang AJ, Wang NS (2011) Methods Mol Biol 679:49–66CrossRefGoogle Scholar
  23. 23.
    Wang B, Zhang J, Dong S (2000) Biosens Bioelectron 15:397–402CrossRefGoogle Scholar
  24. 24.
    Sani S, Muhid MNM, Hamdan H (2011) J Sol-Gel Sci Technol 59:7–18CrossRefGoogle Scholar
  25. 25.
    Wu S, Wang H, Tao S, Wang C, Zhang L, Liu Z, Meng C (2011) Anal Chim Acta 686:81–86CrossRefGoogle Scholar
  26. 26.
    Singh S, Jain DVS, Singla ML (2013) Sens Actuator B-Chem 182:161–169CrossRefGoogle Scholar
  27. 27.
    Gouzi H, Moreau T, Depagne C, Coradin T (2013) Silicon 5:241–246CrossRefGoogle Scholar
  28. 28.
    Gouzi H, Depagne C, Benmansour A, Coradin T (2013) Eur Food Res Technol 237:721–729CrossRefGoogle Scholar
  29. 29.
    Frenkel-Mullerad H, Avnir D (2005) J Am Chem Soc 127:8077–8081CrossRefGoogle Scholar
  30. 30.
    Monsan P, Combes D (1988) Methods Enzymol 137:584–598CrossRefGoogle Scholar
  31. 31.
    Chen YC, Smith T, Hicks RH, Doekhie A, Koumanov F, Wells SA, Edler KJ, van den Elsen J, Holman GD, Marchbank KJ, Sartbaeva A (2017) Sci Rep 7:46568CrossRefGoogle Scholar
  32. 32.
    Donato L, Algieri C, Rizzi A, Giorno L (2014) J MembSci 454:346–350Google Scholar
  33. 33.
    Dykstra P, Hao J, Koev ST, Payne GF, Yu L, Ghodssi R (2009) Sens Actuators B-Chem 138:64–70CrossRefGoogle Scholar
  34. 34.
    Miller JN, Miller JC (2000) Statistics and Chemometrics for Analytical Chemistry, 4th ed. Prentice Hall, Harlow, England, New York, NYGoogle Scholar
  35. 35.
    Mandal A, Ojha K, De AK, Bhattacharjee S (2004) Chem Eng J 102:203–208CrossRefGoogle Scholar
  36. 36.
    Land EJ, Ramsden CA, Riely PA (2007) Tohoku J Exp Med 212:341–348CrossRefGoogle Scholar
  37. 37.
    Moreau T, Depagne C, Suissa G, Gouzi H, Coradin T (2013) J Mater Chem B 1:1235–1240CrossRefGoogle Scholar
  38. 38.
    Depagne C, Masse S, Link T, Coradin T (2012) J Mater Chem 22:12457–12460CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre Nationale de Recherche en Technologie Industrielle C.R.T.I Route de Dély-IbrahimAlgerAlgeria
  2. 2.Département de Chimie, Faculté des Sciences, Laboratoire d’Electrochimie et Chimie AnalytiqueUniversité Abou Bekr BelkaidTlemcenAlgeria
  3. 3.Laboratoire de Chimie Organique, Substances Naturelles et Analyse (COSNA), Département de Chimie, Faculté des SciencesUniversité Abou Bekr BelkaidTlemcenAlgeria
  4. 4.Sorbonne Universités, CNRS, Collège de FranceLaboratoire de Chimie de la Matière Condensée de ParisParisFrance

Personalised recommendations