Advertisement

Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 322–332 | Cite as

Transparent SiO2-GdF3 sol–gel nano-glass ceramics for optical applications

  • J. J. Velázquez
  • J. Mosa
  • G. Gorni
  • R. Balda
  • J. Fernández
  • L. Pascual
  • A. Durán
  • Y. CastroEmail author
Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • 137 Downloads

Abstract

Transparent oxyfluoride nano-glass-ceramics (GCs) containing GdF3 nanocrystals undoped and doped with 0.5 Eu3+ (mol%) were obtained by a novel sol–gel method after sintering at temperatures such low as 550 °C. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) show the precipitation of GdF3 nanocrystals with size between 7 and 10 nm, depending on the crystalline phase (hexagonal or orthorhombic) and the heating time. Fourier transform infrared spectroscopy (FTIR) analysis allows following the system evolution during the heat treatment showing the decomposition of trifluoroacetic acid (TFA), used as fluorine precursor, together with the formation of fluoride lattice bonding. Energy dispersive X-ray (EDX) analysis confirms the incorporation of the RE ions in the fluoride nanocrystals in the GCs. The ions incorporation on the GdF3 crystals is also supported by optical characterisation. Photoluminescence measurements result in a well resolved structure together with a narrowing of the Eu3+ emission and excitation spectra in the GCs compared to the xerogel. Moreover, the asymmetry ratio between the electric dipole transition (5D07F2) to the magnetic dipole transition (5D07F1) is reduced in GCs, indicating that Eu3+ ions are incorporated in the GdF3 crystalline phases. Moreover, Gd3+→Eu3+ energy transfer with enhancement of the energy transfer efficiency was observed in the GCs, further supported by fluorescence decay curves.

Highlights

  • Eu3+ doped SiO2-GdF3 GCs with 20 mol% of crystalline phase has been successfully obtained by sol–gel method.

  • The use of methyl triethoxysilane allows obtaining crack-free GCs samples and reduces the hydroxyl groups.

  • Energy transfer with enhancement of efficiency was observed from Gd3+ to Eu3+ in the nanocrystals.

Keywords

Sol–gel GdF3 Oxyfluoride nano-glass-ceramic Luminescence Energy transfer 

Notes

Acknowledgements

This work was supported by MINECO under Projects N° MAT2013-48246-C2-1-P, MAT2013-48246-C2-2-P and Basque Country University PPG17/07 and GIU17/014. The authors thank the access to the Spanish Beamline (SpLine) at the ESRF facilities in Grenoble. J.J. Velázquez also acknowledges MINECO under Grant FPDI-2013-16895. This paper is also a part of dissemination activities of project FunGlass. This project has received funding from the European Union´s Horizon 2020 research and innovation programme under grant agreement No 739566.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Shan Z, Chen D, Yu Y et al. (2010) Luminescence in rare earth-doped transparent glass ceramics containing GdF3 nanocrystals for lighting applications. J Mater Sci 45:2775–2779.  https://doi.org/10.1007/s10853-010-4266-1 CrossRefGoogle Scholar
  2. 2.
    Tikhomirov VK, Rodríguez VD, Méndez-Ramos J et al. (2012) Optimizing Er/Yb ratio and content in ErYb co-doped glass-ceramics for enhancement of the up- and down-conversion luminescence. Sol Energy Mater Sol Cells 100:209–215.  https://doi.org/10.1016/j.solmat.2012.01.019 CrossRefGoogle Scholar
  3. 3.
    Yin W, Zhao L, Zhou L et al. (2012) Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging. Chemistry 18:9239–9245.  https://doi.org/10.1002/chem.201201053 CrossRefGoogle Scholar
  4. 4.
    Chen D, Wang Y, Yu Y, Huang P (2008) Structure and optical spectroscopy of Eu-doped glass ceramics containing GdF3 nanocrystals. J Phys Chem C 112:18943–18947.  https://doi.org/10.1021/jp808061x CrossRefGoogle Scholar
  5. 5.
    Gorni G, Balda R, Fernández J et al. (2017) Oxyfluoride glass–ceramic fibers doped with Nd3+: structural and optical characterization. CrystEngComm 19:6620–6629.  https://doi.org/10.1039/C7CE01380A CrossRefGoogle Scholar
  6. 6.
    Velázquez JJ, Balda R, Fernández J et al. (2018) Transparent oxyfluoride glass-ceramics with NaGdF4 nanocrystals doped with Pr3+ and Pr3+-Yb3+. J Lumin 193:61–69.  https://doi.org/10.1016/j.jlumin.2017.07.034 CrossRefGoogle Scholar
  7. 7.
    Fedorov PP, Luginina AA, Popov AI (2015) Transparent oxyfluoride glass ceramics. J Fluor Chem 172:22–50.  https://doi.org/10.1016/j.jfluchem.2015.01.009 CrossRefGoogle Scholar
  8. 8.
    De Pablos-Martin A, Ferrari M, Pascual MJ, Righini GC (2015) Glass-ceramics: a class of nanostructured materials for photonics. Riv del Nuovo Cim.  https://doi.org/10.1393/ncr/i2015-10114-0
  9. 9.
    de Pablos-Martín A, Durán A, Pascual MJ (2012) Nanocrystallisation in oxyfluoride systems: mechanisms of crystallisation and photonic properties. Int Mater Rev 57:165–186.  https://doi.org/10.1179/1743280411Y.0000000004 CrossRefGoogle Scholar
  10. 10.
    Fujihara S, Mochizuki C, Kimura T (1999) Formation of LaF3 microcrystals in sol-gel silica. J Non Cryst Solids 244:267–274.  https://doi.org/10.1016/S0022-3093(99)00009-5 CrossRefGoogle Scholar
  11. 11.
    Velázquez JJ, Yanes AC, Del-Castillo J, et al. (2010) Spectroscopic characterization and up-conversion in sol-gel derived Yb3+-Pr3+ co-doped SiO2-LaF3 nano-glass-ceramics. J Non Cryst Solids.  https://doi.org/10.1016/j.jnoncrysol.2010.03.001
  12. 12.
    Yanes AC, Velázquez JJ, Del-Castillo J, et al. (2008) Site-selective spectroscopy in Sm3+-doped sol–gel-derived nano-glass-ceramics containing SnO2 quantum dots. Nanotechnology.  https://doi.org/10.1088/0957-4484/19/29/295707
  13. 13.
    Fujihara S, Tada M, Kimura T (1998) Sol–gel processing of LaF3 thin films. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/J Ceram Soc Jpn 106:124–126Google Scholar
  14. 14.
    Fujihara S, Koji S, Kimura T (2004) Structure and optical properties of (Gd,Eu)F3-nanocrystallized sol–gel silica films. J Mater Chem 14:1331–1335.  https://doi.org/10.1039/B313784H CrossRefGoogle Scholar
  15. 15.
    Ribeiro SJL, Araújo CC, Bueno LA et al. (2004) Sol–gel Eu3+/Tm3+ doped transparent glass–ceramic waveguides. J Non Cryst Solids 348:180–184.  https://doi.org/10.1016/j.jnoncrysol.2004.08.164 CrossRefGoogle Scholar
  16. 16.
    Biswas A, Maciel GS, Friend CS, Prasad PN (2003) Upconversion properties of a transparent Er3+–Yb3+ co-doped LaF3–SiO2 glass-ceramics prepared by sol–gel method. J Non Cryst Solids 316:393–397.  https://doi.org/10.1016/S0022-3093(02)01951-8 CrossRefGoogle Scholar
  17. 17.
    Velázquez JJ, Rodríguez VD, Yanes AC et al. (2012) Down-shifting in Ce3+–Tb3+ co-doped SiO2–LaF3 nano-glass–ceramics for photon conversion in solar cells. Opt Mater 34:1994–1997.  https://doi.org/10.1016/j.optmat.2011.12.020 CrossRefGoogle Scholar
  18. 18.
    Velázquez JJ, Rodríguez VD, Yanes AC et al. (2012) Photon down-shifting by energy transfer from Sm3+ to Eu3+ ions in sol–gel SiO2-LaF3 nano-glass-ceramics for photovoltaics. Appl Phys B 108:577–583.  https://doi.org/10.1007/s00340-012-4950-8 CrossRefGoogle Scholar
  19. 19.
    Szpikowska-Sroka B, Pawlik N, Goryczka T, Pisarski WA (2015) Influence of silicate sol–gel host matrices and catalyst agents on the luminescent properties of Eu3+/Gd3+ under different excitation wavelengths. RSC Adv 5:98773–98782.  https://doi.org/10.1039/C5RA15562B CrossRefGoogle Scholar
  20. 20.
    Innocenzi P, Abdirashid MO, Guglielmi M (1994) Structure and properties of sol–gel coatings from methyltriethoxysilane and tetraethoxysilane. J Sol–Gel Sci Technol 3:47–55.  https://doi.org/10.1007/BF00490148 CrossRefGoogle Scholar
  21. 21.
    Castro Y, Ferrari B, Moreno ADR (2010) Recubrimientos sol-gel obtenidos por deposición electroforética (EPD) sobre metales. Bol la Soc Esp Cerámica Y Vidr 39:705–710.  https://doi.org/10.3989/cyv.082012 CrossRefGoogle Scholar
  22. 22.
    Grzyb T, Runowski M, Lis S (2014) Facile synthesis, structural and spectroscopic properties of GdF3: Ce3+, Ln3+ (Ln3+ = Sm3+, Eu3+, Tb3+, Dy3+) nanocrystals with bright multicolor luminescence. J Lumin 154:479–486.  https://doi.org/10.1016/j.jlumin.2014.05.020 CrossRefGoogle Scholar
  23. 23.
    Pawlik N, Szpikowska-Sroka B, Sołtys M, Pisarski WA (2016) Optical properties of silica sol-gel materials singly- and doubly-doped with Eu3+ and Gd3+ ions. J Rare Earths 34:786–795.  https://doi.org/10.1016/S1002-0721(16)60095-9 CrossRefGoogle Scholar
  24. 24.
    Pokhrel M, Mimun LC, Yust B et al. (2014) Stokes emission in GdF3:Nd3+ nanoparticles for bioimaging probes. Nanoscale 6:1667–1674.  https://doi.org/10.1039/C3NR03317A CrossRefGoogle Scholar
  25. 25.
    Lee G, Savage N, Wagner B et al. (2014) Synthesis and luminescence properties of transparent nanocrystalline GdF3:Tb glass-ceramic scintillator. J Lumin 147:363–366.  https://doi.org/10.1016/j.jlumin.2013.11.073 CrossRefGoogle Scholar
  26. 26.
    Liu S, Chen D, Wan Z et al. (2016) Phase structure control and optical spectroscopy of rare-earth activated GdF3 nanocrystal embedded glass ceramics via alkaline-earth/alkali-metal doping. RSC Adv 6:71176–71187.  https://doi.org/10.1039/C6RA17332B CrossRefGoogle Scholar
  27. 27.
    Szpikowska-Sroka B, Żur L, Czoik R et al. (2014) Ultraviolet-to-visible downconversion luminescence in solgel oxyfluoride glass ceramics containing Eu3+:GdF3 nanocrystals. Opt Lett 39:3181.  https://doi.org/10.1364/OL.39.003181 CrossRefGoogle Scholar
  28. 28.
    Bueno LA, Gouveia-Neto AS, da Costa EB et al. (2008) Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe. J Phys Condens Matter 20:145201CrossRefGoogle Scholar
  29. 29.
    Zhong J, Liang H, Su Q et al. (2010) Luminescence properties of NaGd(PO3)4:Eu3+ and energy transfer from Gd3+ to Eu3+. Appl Phys B 98:139–147.  https://doi.org/10.1007/s00340-009-3673-y CrossRefGoogle Scholar
  30. 30.
    Wegh R, Donker H, Oskam K, Meijerink A (1999) Visible quantum cutting in Eu3+-doped gadolinium fluorides via downconversion. J Lumin 82:93–104.  https://doi.org/10.1016/S0022-2313(99)00042-3 CrossRefGoogle Scholar
  31. 31.
    Lepoutre S, Boyer D, Fujihara S, Mahiou R (2009) Structural and optical characterizations of sol–gel based composites constituted of LiGdF4:Eu3+ nanocrystallites dispersed into a silica matrix. J Mater Chem 19:2784.  https://doi.org/10.1039/b819871c CrossRefGoogle Scholar
  32. 32.
    Luo W, Wang Y, Cheng Y et al. (2006) Crystallization and structural evolution of YF3-SiO2 xerogel. Mater Sci Eng B Solid-State Mater Adv Technol 127:218–223.  https://doi.org/10.1016/j.mseb.2005.10.034 CrossRefGoogle Scholar
  33. 33.
    Cullity BD (1978) Elements of X-ray diffraction, 2nd edition. Addison-Wesley Publ Co, Reading, MA 100-105-279.  https://doi.org/10.1119/1.1934486
  34. 34.
    Gorni G, Pascual MJ, Caballero A, et al. (2018) Crystallization mechanism in sol-gel oxyfluoride glass-ceramics. J Non Cryst Solids.  https://doi.org/10.1016/j.jnoncrysol.2018.01.031
  35. 35.
    Gorni G, Velázquez JJ, Mosa J, et al. (2018) Transparent glass-ceramics produced by sol-gel: a suitable alternative for photonic materials. Materials.  https://doi.org/10.3390/ma11020212
  36. 36.
    Eloussifi H, Farjas J, Roura P et al. (2012) Evolution of yttrium trifluoroacetate during thermal decomposition. J Therm Anal Calorim 108:589–596.  https://doi.org/10.1007/s10973-011-1899-5 CrossRefGoogle Scholar
  37. 37.
    Kondo Y, Tanaka K, Ota R et al. (2005) Time-resolved study of luminescence in soda-lime silicate glasses co-doped with Gd3+ and Eu3+. Opt Mater 27:1438–1444.  https://doi.org/10.1016/j.optmat.2004.10.007 CrossRefGoogle Scholar
  38. 38.
    Reisfeld R, Zigansky E, Gaft M (2004) Europium probe for estimation of site symmetry in glass films, glasses and crystals. Mol Phys 102:1319–1330.  https://doi.org/10.1080/00268970410001728609 CrossRefGoogle Scholar
  39. 39.
    EWJL Oomen, van Dongen AMA (1989) Europium (III) in oxide glasses: dependence of the emission spectrum upon glass composition. J Non Cryst Solids 111:205–213.  https://doi.org/10.1016/0022-3093(89)90282-2 CrossRefGoogle Scholar
  40. 40.
    Karbowiak M, Mech A, Kępiński L et al. (2005) Effect of crystallite size on structural and luminescent properties of nanostructured Eu3+:KGdF4 synthesised by co-precipitation method. J Alloy Compd 400:67–75.  https://doi.org/10.1016/j.jallcom.2005.01.058 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Grupo GlaSS, Instituto de Cerámica y Vidrio-CSICMadridSpain
  2. 2.FunGlass – Centre for Functional and Surface Functionalized GlassAlexander Dubček University of TrenčínTrenčínSlovakia
  3. 3.Applied Physic Department I, Superior school of EngineeringPais Vasco UniversityBilbaoSpain
  4. 4.Materials Physics Center CSIC-UPV/EHUSan SebastiánSpain
  5. 5.Instituto de Catálisis y Petroleoquímica-CSICMadridSpain

Personalised recommendations