Advertisement

Journal of Sol-Gel Science and Technology

, Volume 88, Issue 1, pp 66–76 | Cite as

Adsorption of lead(II), cadmium(II) and dysprosium(III) from aqueous solutions using mesoporous silica modified with phosphonic acid groups

  • Yulia S. Fetisova
  • Oksana A. Dudarko
  • Maja Bauman
  • Aleksandra Lobnik
  • Valeriia V. Sliesarenko
Original Paper: Sol-gel and hybrid materials with surface modification for applications
  • 106 Downloads

Abstract

The mesoporous silica samples with different concentrations of phosphonic acid groups on the surface were obtained by direct template synthesis. The block-copolymer Pluronic P123 was used as a template, and sodium meta-silicate with diethylphosphatoethyltriethoxysilane as precursors. According to the SAXS diffractograms, mesoporous silica samples have a p6mm hexagonal symmetry. In addition, we used sol–gel method to synthesize xerogel with the same groups for comparison. All samples possess high values of specific surface area 615–730 m2/g and sorption pore volume. FTIR and potentiometric titration methods were used to investigate the surface layer of these samples. Sorption properties of the samples with phosphonic acid groups were studied in respect to a row of metal cations, among which we focused on lead(II), cadmium(II), and dysprosium(III) cations.

Highlights

  • Mesoporous silica with Phosphonic acid groups on the surface layer prepared via template synthesis.

  • Study of low-T adsorption of nitrogen (BET), FTIR and potentiometric titration.

  • Metal ion sorption properties of the samples compared to Xerogel

Keywords

Adsorption Mesoporous silica Organosilica Phosphonic acid groups SBA-15 Template synthesis 

Notes

Acknowledgements

This research is sponsored by NATO’s Public Diplomacy Division in the framework of «Science for Peace» NATO Project SPS.NUKR.SFP 984398.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Jaganathan H, Godina B (2012) Biocompatibility assessment of Si-based nano- and micro-particles. Adv Drug Deliv Rev 64(15):1800–1819CrossRefGoogle Scholar
  2. 2.
    Bharti C, Nagaich U, Kumar Pal A, Gulati N (2015) Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig 5(3):124–133CrossRefGoogle Scholar
  3. 3.
    Buckley AM, Greenblatt M (1994) The sol-gel preparation of silica gels. J Chem Educ 71(7):599CrossRefGoogle Scholar
  4. 4.
    Singh LP, Bhattacharyya SK, Ahalawat S, Kumar R, Mishra G, Sharma U, Singh G (2014) Sol-Gel processing of silica nanoparticles and their applications. Adv Colloid Interface Sci 214:17–37CrossRefGoogle Scholar
  5. 5.
    Hoffmann F, Cornelius M, Morell J, Froba M (2006) Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed. 45:3216–3251CrossRefGoogle Scholar
  6. 6.
    Colilla M, Vallet-Regi M (2011) Ordered mesoporous silica materials. Elsevier: Comprehensive Biomaterails. 1st edn.: 497–514CrossRefGoogle Scholar
  7. 7.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552CrossRefGoogle Scholar
  8. 8.
    Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036CrossRefGoogle Scholar
  9. 9.
    Anderson JR, Boudart M (ed) (1983) Catalysis: Science and Technology. Springer.  https://doi.org/10.1007/978-3-642-93229-8 Google Scholar
  10. 10.
    Aliev Ab, Li Ou D, Ormsby B, Sullivan AC (2000) Porous silica and polysilsesquioxane with covalently linked phosphonates and phosphonic acids. J Mater Chem 10:2758–2764CrossRefGoogle Scholar
  11. 11.
    Dudarko O, Mel’nyk I, Zub Y, Chuiko AA, Dabrowski A (2006) Template-directed synthesis of mesoporous silicas containing phosphonic acid derivatives in the surface layer Inorg Mater 42(4):360–367CrossRefGoogle Scholar
  12. 12.
    Dudarko O, Gunathilake C, Sliesarenko V, Zub YL, Jaroniec M (2014) Microwave-assisted and conventional hydrothermal synthesis of ordered mesoporous silicas with P-containing functionalities. Colloids Surf A: Physicochem Eng Asp 459:4–10CrossRefGoogle Scholar
  13. 13.
    Elbhiri Z, Chevalier Y, Chovelon JM, Jaffrezic-Renault N (2000) Grafting of phosphonate groups on the silica surface for the elaboration of ion-sensitive field-effect transistors. Talanta 52:495–507CrossRefGoogle Scholar
  14. 14.
    Lebed PJ, de Souza K, Bilodeau F, Lariviere D, Kleitz F (2011) Phosphonate-functionalized large pore 3-D cubic mesoporous (KIT-6) hybrid as highly efficient actinide extracting agent. Chem Commun 47:11525–11527CrossRefGoogle Scholar
  15. 15.
    Lebed PJ, Savoie JD, Florek J, Bilodeau F, Larivière D, Kleitz F (2012) Large pore mesostructured organosilica-phosphonate hybrids as highly efficient and regenerable sorbents for uranium sequestration. Chem Mater 24:4166–4176CrossRefGoogle Scholar
  16. 16.
    Le Y, Yang X, Dai WL, Gao R, Fan K (2008) Unexpected mononuclear W(VI) complexes containing phosphonate ligands anchored on mesoporous silica. Catal Commun 9:1838–1841CrossRefGoogle Scholar
  17. 17.
    Saldadze KM (1960) Ion-exchange high-molecular compounds. Goskhimizdat, Moscow (in Russian)Google Scholar
  18. 18.
    Saldadze K M (1980) Complexing ionites (complexites). Chemistry, Moscow (in Russian)Google Scholar
  19. 19.
    Kholin YV, Zaitsev VN, Zaitseva GN, Mernyi SA (1995) Complexation in adsorption layers of silica with grafted groups of aminophosphonic and aminodiphosphonic acids J Inorg Chem 40(2):275–283in RussianGoogle Scholar
  20. 20.
    Ryabchikov DI, Ryabukhin VA (1966) Analytical chemistry of rare-earth elements and yttrium. Nauka, Moscow, (in Russian)Google Scholar
  21. 21.
    Zaitsev VM, Savransky LI (2005) Functional characteristics of porous materials for analitic chemistry. VPN KNU T. Shevchenko, Kyiv, (in Ukr.)Google Scholar
  22. 22.
    Milyutin VV, Gelis VM, Nekrasova NA, Melnyk IV, Dudarko OA, Sliesarenko VV, Zub YL (2014) Sorption of actinide ions onto mesoporous phosphorus-containing silicas. Radiochemistry 56(3):262–266CrossRefGoogle Scholar
  23. 23.
    Cheraghali R, Tavakoli H, Sepehrian H (2013) Preparation, characterization and lead sorption performance of alginate-SBA-15 composite as a novel adsorbent. Sci Iran 20(3):1028–1034Google Scholar
  24. 24.
    Dudarko OA, Goncharik VP, Semenii VY, Zub YL (2008) Sorption of Hg2+, Nd3+, Dy3+, and UO2 2+ Ions at polysiloxane xerogels functionalized with phosphonic acid derivatives. Prot Met 44(2):193–197CrossRefGoogle Scholar
  25. 25.
    Melnyk I, Goncharyk V, Stolyarchuk N, Kozhara LI, Lunochkina AS, Alonso B, Zub YL (2012) Dy(III) sorption from water solutions by mesoporous silicas functionalized with phosphonic acid groups. J Porous Mater 19:579–585CrossRefGoogle Scholar
  26. 26.
    Melnyk I, Goncharyk V, Kozhara L, Yurchenko GR, Matkovsky AK, Zub YL, Alonso B (2012) Sorption properties of porous spray-dried microspheres functionalized by phosphonic acid groups. Microporous Mesoporous Mater 153:171–177CrossRefGoogle Scholar
  27. 27.
    Budnyak T, Strizhak A, Gładysz-Płaska A, Sternik D, Komarov IV, Kołodynska D, Majdan M, Tertykh VA (2016) Silica with immobilized phosphonic acid-derivative for uranium extraction. J Hazard Mater 314:326–340CrossRefGoogle Scholar
  28. 28.
    Dudarko OA, Gunathilake C, Wickramaratne NP, Sliesarenko VV, Zub YL, Gorka J, Dai S, Jaroniec M (2015) Synthesis of mesoporous silica-tethered phosphonic acid sorbents for uranium species from aqueous solutions. Colloids Surf A: Physicochem Eng Asp 482:4–10CrossRefGoogle Scholar
  29. 29.
    Pearson RG, Songstad J (1967) Application of the principle of hard and soft acids and bases to organic chemistry. J Am Chem Soc 89(8):1827–1836CrossRefGoogle Scholar
  30. 30.
    Pu H, Pan H, Qin Y, Wan D, Yuan J (2010) Phosphonic acid-functionalized hollow silica spheres by nitroxide mediated polymerization. Mater Lett 64:1510–1512CrossRefGoogle Scholar
  31. 31.
    Martinez-Carmona M, Colilla M, Ruiz-Gonzalez ML, Gonzalez-Calbet JM, Vallet-Regi M (2016) High resolution transmission electron microscopy: A key tool to understand drug release from mesoporous matrices. Microporous Mesoporous Mater 225:399–410CrossRefGoogle Scholar
  32. 32.
    Dudarko OA, Mel’nik IV, Zub YL (2005) Synthesis of polysiloxane xerogels using tetraethoxysilane/(diethylphosphatoethyl)triethoxysilane system. Colloid J 67(6):683–687CrossRefGoogle Scholar
  33. 33.
    Dabrowski A, Barczak M, Dudarko OA, Zub YL (2007) Preparation and characterization of polysiloxane xerogels having covalently attached phosphonic groups. Pol J Chem 81(4):475–483Google Scholar
  34. 34.
    Melnyk IV, Fatnassi M, Cacciaguerra T, Zub YL, Alonso B (2012) Spray-dried porous silica microspheres functionalised by phosphonic acid groups. Microporous Mesoporous Mater 152:172–177CrossRefGoogle Scholar
  35. 35.
    Sing KSW, Everett DH, Haul RAW (1985) Reporting physisorption data for gas/solid system with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619CrossRefGoogle Scholar
  36. 36.
    Brunauer S, Emmet PH, Teller E (1938) Adsorption of Gases in Multimolecular Layers. J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  37. 37.
    Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380CrossRefGoogle Scholar
  38. 38.
    Albert A, Serjeant EP (1962) Ionization constants of acids & bases. John Wiley & Sons, New YorkGoogle Scholar
  39. 39.
    Schwarzenbach G, Flaschka G (1970) Complexation titration. Chemistry, Moscow (in Russian)Google Scholar
  40. 40.
    Schneider P, Hudec P, Solcova O (2008) Pore-volume and surface area in microporous–mesoporous solids. Microporous Mesoporous Mater 115:491–496CrossRefGoogle Scholar
  41. 41.
    Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Academic Pess, UKGoogle Scholar
  42. 42.
    The 1998 Aarhus Protocol on Heavy Metals. United Nations Economic Commission for Europe. http://www.unece.org/env/lrtap/hm_h1.html
  43. 43.
    Draper NR, Smith H (1998) Applied Regression Analysis. Wiley-Interscience, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yulia S. Fetisova
    • 1
  • Oksana A. Dudarko
    • 2
  • Maja Bauman
    • 3
  • Aleksandra Lobnik
    • 3
    • 4
  • Valeriia V. Sliesarenko
    • 2
  1. 1.National University of “Kyiv-Mohyla Academy”KyivUkraine
  2. 2.Chuiko Institute of Surface ChemistryNAS of UkraineKyivUkraine
  3. 3.Institute for Environmental Protection and SensorsIOS LtdMariborSlovenia
  4. 4.Faculty for Mechanical EngineeringUniversity of MariborMariborSlovenia

Personalised recommendations