Advertisement

Journal of Sol-Gel Science and Technology

, Volume 86, Issue 3, pp 782–794 | Cite as

Study of visible light emission under UV excitation in Y2O3:Er3+-Gd3+ and Y2O3:Eu3+-Gd3+ nanocrystals

  • S. Vargas Rodríguez
  • E. G. Villabona-Leal
  • J. C. Mixteco-Sánchez
  • V. H. Romero
  • H. Desirena
  • Elias Perez
  • U. Salazar-Kuri
  • O. Meza
Original Paper: Sol–gel and hybrid materials for optical, photonic and optoelectronic applications
  • 133 Downloads

Abstract

In this work, we study the Y2O3:Er3+-Gd3+ and Y2O3:Eu3+-Gd3+ nanocrystals using statistical tools in order to quantify the effect of dopant concentration, crystallite size, induced strain, and lattice parameters on luminescent parameters such as intensity and color emission. Samples were synthesized using the sol–gel method. In the case of emission properties of Y2O3:Er3+-Gd3+, the most important factor is Erbium concentration, while the energy transfer between Gadolinium-Erbium is statistically insignificant, compared to the dynamics between Erbium–Erbium ions. On the other hand, the Y2O3:Eu3+-Gd3+ emission intensity depends on the dopant concentration: an increase of Gadolinium ions increases the emission intensity, and the quadratic effect of the Eu3+ ions reduce the emission intensity. However, the color coordinate is not so influenced by the dopant concentration; in the case of Y2O3:Er3+-Gd3+ samples, the color coordinate depends only on Er3+ concentration.

Stokes luminescence process of Gd3+, Eu3+, Er3+ ions, and charge‐transfer bands responsible for the visible emission.

Keywords

ANOVA Emission Europium Gadolinium Erbium 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2018_4661_MOESM1_ESM.pdf (518 kb)
Supplementary information

References

  1. 1.
    Thejo Kalyani N, Dhoble SJ (2012) Organic light emitting diodes: energy saving lighting technology—a review Renew Sustain Energy Rev 16(5):2696–2723CrossRefGoogle Scholar
  2. 2.
    Rangari VV, Dhoble SJ (2015) Synthesis and photoluminescence studies of Ba(Gd, Ln) B9O16:Eu3+ (Ln=La,Y) phosphors for n-UV LED lighting and display devices J Rare Earths 33(2):140–147CrossRefGoogle Scholar
  3. 3.
    Patra A, Friend CS, Kapoor R, Prasad PN (2002) Upconversion in Er3+:ZrO2 Nanocrystals. J Phys Chem B 106:1909–1912CrossRefGoogle Scholar
  4. 4.
    De la Rosa E, Diaz-Torres LA, Salas P, Rodríguez RA (2005) Visible light emission under UV and IR excitation of rare earth doped ZrO2 nanophosphor Opt Mater 27(7):1320–1325CrossRefGoogle Scholar
  5. 5.
    Lupei A, Lupei V, Hau S (2017) Vibronics in optical spectra of Yb3+ and Ce3+ in YAG and Y2O3 ceramics. Opt Mater 63:143–152CrossRefGoogle Scholar
  6. 6.
    Rodríguez VD, Tikhomirov VK, Méndez-Ramos J, Yanes AC, Moshchalkov VV (2010) Towards broad range and highly efficient down-conversion of solar spectrum by Er3+–Yb3+ co-doped nano-structured glass-ceramics Sol Energy Mater Sol Cells 64(10):1612–1617CrossRefGoogle Scholar
  7. 7.
    Aarts L, van der Ende BM, Meijerink A (2009) Downconversion for solar cells in NaY F4:Er; Yb J Appl Phys 106(2):23522CrossRefGoogle Scholar
  8. 8.
    Camposeco-Negrete C (2013) Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA. J Clean Prod 53:195–203CrossRefGoogle Scholar
  9. 9.
    Feng J, Zhang J, Zhang J, He Y, Zhang R, Chen C, Liu G (2017) Enhanced methane production of vinegar residue by response surface methodology (RSM). AMB Express 7:89CrossRefGoogle Scholar
  10. 10.
    Alhaji A, Razavi RS, Ghasemi A, Loghman-Estarki MR (2017) Modification of Pechini sol–gel process for the synthesis of MgO-Y2O3 composite nanopowder using sucrose-mediated technique Ceram Int 43(2):2541–2548CrossRefGoogle Scholar
  11. 11.
    Huízar-Félix AM, Hernández T, de la Parra S, Ibarra J, Kharisov B (2012) Sol-gel based Pechini method synthesis and characterization of Sm1−xCaxFeO3 perovskite 0.1 × 0.5. Powder Technol 229:290–293CrossRefGoogle Scholar
  12. 12.
    Dimesso L, Klein L, Aparicio M, Jitianu A (2016) Pechini processes: an alternate approach of the sol–gel method, preparation, properties, and applications. In: Handbook of sol-gel science and technology. Springer International Publishing, Switzerland, pp 1–22Google Scholar
  13. 13.
    Laberty-Robert C, Ansart F, Castillo S, Richard G (2002) Synthesis of YSZ powders by the sol-gel method: Surfactant effects on the morphology Solid State Sci 4(8):1053–1059CrossRefGoogle Scholar
  14. 14.
    Xie Y, Wang G, Xiao LJ, Li WZ, Chen YJ, Zhang ZG, Wang YJ (2013) Effects of surfactants on particle size and luminescence properties of Ca1.98MgSiO5:Eu2+ 0.02 phosphor prepared by sol-gel method. Adv Mater Res 634:2454–2457CrossRefGoogle Scholar
  15. 15.
    Kriz DA, He J, Pahalagedara M, Suib SL (2017) Response to comments on the application of the Scherrer equation in “Copper aluminum mixed oxide (CuAl MO) catalyst: a green approach for the one-pot synthesis of imines under solvent-free conditions”, by Suib et al. ((2016) Appl Catal B Environ 188:227–234.  https://doi.org/10.1016/j.apcatb.2016.02.007). Article type: Correspondence 202:704–705
  16. 16.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy principles of fluorescence spectroscopy, 3rd edn. Springer-Verlag, US, pp 1–60.Google Scholar
  17. 17.
    Thoma RE, Insley H, Hebert GM (1966) The sodium fluoride-lanthanide trifluoride systems Inorg Chem 5(7):1222–1229CrossRefGoogle Scholar
  18. 18.
    Wegh RT, Meijerink A, Lamminmäki R-J, Jorma H (2000) Extending Dieke’s diagram. J Lumin 8:1002–1004CrossRefGoogle Scholar
  19. 19.
    Meza O, Villabona-Leal EG, Diaz-Torres LA, Desirena H, Rodríguez-López JL, Pérez E (2014) Luminescence concentration quenching mechanism in Gd2O3:Eu3+ J Phys Chem A 118(8):1390–1396CrossRefGoogle Scholar
  20. 20.
    Montgomery DC (2006) Design and analysis of experiments. John Wiley & Sons, US, pp 1–30Google Scholar
  21. 21.
    Solé JG, Bausá LE, Jaque D (2005) An introduction to the optical spectroscopy of inorganic solids. John Wiley & Sons, US, Ltd., pp 1–38Google Scholar
  22. 22.
    Meza O, Diaz-Torres La, Salas P, De la Rosa E, Solis D (2010) Color tunability of the upconversion emission in Er–Yb doped the wide band gap nanophosphors ZrO2 and Y2O3. Mater Sci Eng: B 174:177–181CrossRefGoogle Scholar
  23. 23.
    Ohta N, Robertson A (2005) Colorimetry: fundamentals and applications. Wiley, US, p 350Google Scholar
  24. 24.
    Gamelin DR, Gudel HU (2001) Transition metal and rare earth compounds: excited states, transitions, interactions II, upconversion processes in transition metal and rare earth metal systems. Springer, Berlin Heidelberg, pp 1–56CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Vargas Rodríguez
    • 1
  • E. G. Villabona-Leal
    • 2
  • J. C. Mixteco-Sánchez
    • 1
  • V. H. Romero
    • 3
  • H. Desirena
    • 4
  • Elias Perez
    • 2
  • U. Salazar-Kuri
    • 5
  • O. Meza
    • 5
  1. 1.Universidad de Guadalajara, Centro Universitario de los Valles, Carretera Guadalajara-AmecaAmecaMexico
  2. 2.Instituto de FísicaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  3. 3.Universidad de Guadalajara, Centro Universitario de TonaláTonaláMexico
  4. 4.Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (GEMANA)Centro de Investigaciones en ÓpticaLeonMexico
  5. 5.Instituto de Física, Ing. Luis Rivera TerrazasBenemérita Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations