Advertisement

Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 343–353 | Cite as

Additive-free continuous synthesis of silica and ORMOSIL micro- and nanoparticles applying a microjet reactor

  • Christina Odenwald
  • Guido KickelbickEmail author
Original Paper: Sol-gel, hybrids and solution chemistries

Abstract

The continuous wet chemical preparation of micro- and nanoparticles is a major challenge for the large-scale production of functional colloids. Here we present a general synthetic strategy for sol–gel-based materials via an additive free homogenous approach avoiding emulsion-based systems. A variety of different silica and organically-modified silica (ORMOSIL) spherical particles were prepared applying a condensation of prehydrolyzed alcoholic solution of organotrialkoxysilanes in a microjet reactor. This method presents a unique wet chemical production method for nano- and microscale materials. Methyl-, ethyl-, propyl-, vinyl-, phenyl-, and mixed ORMOSIL particles in the range of 75 nm–2 µm were successfully synthesized without the addition of stabilizing surfactants. The method was also investigated for the continuous preparation of pure silica particles, and we succeeded to produce continuously up to 23 g particles per minute. The influence of different organic groups on the crosslinking of the siloxane network was systematically studied applying various spectroscopic and thermoanalytical methods. The degree of condensation of the obtained particles depends on the organic rests of the trialkoxysilanes, which was studied with 29Si CP-MAS NMR. We were able to show that phenyl silsesquioxanes show less condensation in the particles than smaller alkyl or vinyl groups. In addition, the silane concentration has a significant influence on the particle size. Generally, smaller particle diameters are obtained after decreasing the silane concentration. The described process delivers a fast and large scale wet chemical production of various silsesquioxane and silica particles without the use of additives and is therefore suited for a variety of potential applications where high purity of the particles is necessary.

Keywords

Continuous synthesis microreactor ORMOSIL polysilsesquioxanes silica nanoparticles additive-free 

Notes

Acknowledgements

We thank Dr. Michael Zimmer for the CP-MAS-NMR measurements and Susanne Harling for elemental analyses.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2018_4626_MOESM1_ESM.docx (9.2 mb)
supplementary Information(DOCX 9462 kb)

References

  1. 1.
    Pachón LD, Rothenberg G (2008) Transition-metal nanoparticles: synthesis, stability and the leaching issue. Appl Organomet Chem 22(6):288–299.  https://doi.org/10.1002/aoc.1382 Google Scholar
  2. 2.
    Wang L, Wang L, Xia T, Dong L, Bian G, Chen H (2004) Direct fluorescence quantification of chromium(VI) in wastewater with organic nanoparticles sensor. Anal Sci 20(7):1013–1017Google Scholar
  3. 3.
    Barbé CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Grätzel M (1997) Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc 80(12):3157–3171Google Scholar
  4. 4.
    Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100(1):1–11.  https://doi.org/10.1263/jbb.100.1 Google Scholar
  5. 5.
    Mihindukulasuriya SDF, Lim L-T (2014) Nanotechnology development in food packaging: a review. Trends Food Sci Tech 40(2):149–167.  https://doi.org/10.1016/j.tifs.2014.09.009 Google Scholar
  6. 6.
    Becheri A, Dürr M, Lo Nostro P, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10(4):679–689.  https://doi.org/10.1007/s11051-007-9318-3 Google Scholar
  7. 7.
    Rahman MT, Rebrov EV (2014) Microreactors for gold nanoparticles synthesis: from Faraday to flow. Processes 2(2):466–493.  https://doi.org/10.3390/pr2020466 Google Scholar
  8. 8.
    Khan SA, Günther A, Schmidt MA, Jensen KF (2004) Microfluidic synthesis of colloidal silica. Langmuir 20(20):8604–8611.  https://doi.org/10.1021/la0499012 Google Scholar
  9. 9.
    Gutsch A, Krämer M, Michael G, Mühlenweg H, Pridöhl M, Zimmermann G (2002) Gas-phase production of nanoparticles. KONA 20:24–37Google Scholar
  10. 10.
    Suh YK, Kang S (2010) A review on mixing in microfluidics. Micromachines 1(3):82–111.  https://doi.org/10.3390/mi1030082 Google Scholar
  11. 11.
    Marre S, Jensen KF (2010) Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev 39(3):1183–1202.  https://doi.org/10.1039/b821324k Google Scholar
  12. 12.
    Zhao C-X, He L, Qiao SZ, Middelberg APJ (2011) Nanoparticle synthesis in microreactors. Chem Eng Sci 66(7):1463–1479.  https://doi.org/10.1016/j.ces.2010.08.039 Google Scholar
  13. 13.
    Betke A, Kickelbick G (2014) Bottom-up, wet chemical technique for the continuous synthesis of inorganic nanoparticles. Inorganics 2(1):1–15.  https://doi.org/10.3390/inorganics2010001 Google Scholar
  14. 14.
    Penth B (2007) Kontinuierliche Produktion in Mikroreaktoren. German Patent DE102006004350 A1.Google Scholar
  15. 15.
    Gutierrez L, Gomez L, Irusta S, Arruebo M, Santamaria J (2011) Comparative study of the synthesis of silica nanoparticles in micromixer–microreactor and batch reactor systems. Chem Eng J 171(2):674–683.  https://doi.org/10.1016/j.cej.2011.05.019 Google Scholar
  16. 16.
    Su M, Su H, Du B, Li X, Ren G, Wang S (2014) The properties of silica nanoparticles with high monodispersity synthesized in the microreactor system. J Sol-Gel Sci Technol 72(2):375–384.  https://doi.org/10.1007/s10971-014-3445-y Google Scholar
  17. 17.
    Kessler D, Löwe H, Theato P (2009) Synthesis of defined poly(silsesquioxane)s: fast polycondensation of trialkoxysilanes in a continuous-flow microreactor. Macromol Chem Phys 210(10):807–813.  https://doi.org/10.1002/macp.200800611 Google Scholar
  18. 18.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69Google Scholar
  19. 19.
    Van Blaaderen A, Vrij A (1993) Synthesis and characterization of monodisperse colloidal organo-silica spheres. J Colloid Interface Sci 156:1–18Google Scholar
  20. 20.
    Etienne M, Lebeau B, Walcarius A (2002) Organically-modified mesoporous silica spheres with MCM-41 architecture. New J Chem 26(4):384–386.  https://doi.org/10.1039/b110741k Google Scholar
  21. 21.
    Arkhireeva A, Hay JN (2003) Synthesis of sub-200 nm silsesquioxane particles using a modified Stöber sol–gel route. J Mater Chem 13(12):3122–3127.  https://doi.org/10.1039/b306994j Google Scholar
  22. 22.
    Choi JY, Kim CH, Kim DK (1998) Formation and characterization of monodisperse, spherical organo-silica powders from organo-alkoxysilane-water system. J Am Ceram Soc 81(5):1184–1188Google Scholar
  23. 23.
    Ottenbrite RM, Wall JS (2000) Self-catalyzed synthesis of organo-silica nanoparticles. J Am Ceram Soc 83(12):3214–3215Google Scholar
  24. 24.
    Boday DJ, Tolbert S, Keller MW, Li Z, Wertz JT, Muriithi B, Loy DA (2014) Non-hydrolytic formation of silica and polysilsesquioxane particles from alkoxysilane monomers with formic acid in toluene/tetrahydrofuran solutions. J Nanopart Res 16(3):1–13.  https://doi.org/10.1007/s11051-014-2313-6 Google Scholar
  25. 25.
    Krüner B, Odenwald C, Tolosa A, Schreiber A, Aslan M, Kickelbick G, Presser V (2017) Carbide-derived carbon beads with tunable nanopores from continuously produced polysilsesquioxanes for supercapacitor electrodes. Sustain Energy Fuels 1:1588–1600.  https://doi.org/10.1039/C7SE00265C10.1039/c7se00265c Google Scholar
  26. 26.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675.  https://doi.org/10.1038/nmeth.2089 Google Scholar
  27. 27.
    Bah T (2011) Inkscape: guide to a vector drawing program, 4th edn.Google Scholar
  28. 28.
    Fournier M-C, Falk L, Villermaux J (1996) A new parallel competing reaction system for assessing micromixing efficiency - experimental approach. Chem Eng Sci 51(22):5053–5064Google Scholar
  29. 29.
    Dushman S (1904) The rate of the reaction between iodic and hydriodic acids. J Phys Chem 8(7):453–482.  https://doi.org/10.1021/j150061a001 Google Scholar
  30. 30.
    Commenge J-M, Falk L (2011) Villermaux–Dushman protocol for experimental characterization of micromixers. Chem Eng Process 50(10):979–990.  https://doi.org/10.1016/j.cep.2011.06.006 Google Scholar
  31. 31.
    Brinker CJ, Tallant DR, Roth EP, Ashley CS (1986) Sol-gel transition in simple silicates III. Structural studies during densification. J Non-Cryst Solids 82:117–126Google Scholar
  32. 32.
    Brinker CJ (1988) Hydrolysis and condensation of silicates: effects on structure. J Non-Cryst Solids 100:31–50Google Scholar
  33. 33.
    Klein LC, Jitianu A (2010) Organic–inorganic hybrid melting gels. J Sol-Gel Sci Technol 55(1):86–93.  https://doi.org/10.1007/s10971-010-2219-4 Google Scholar
  34. 34.
    Brochier Salon M-C, Bayle P-A, Abdelmouleh M, Boufi S, Belgacem MN (2008) Kinetics of hydrolysis and self condensation reactions of silanes by NMR spectroscopy. Colloids Surf A: Physicochem Eng Asp 312(2-3):83–91.  https://doi.org/10.1016/j.colsurfa.2007.06.028 Google Scholar
  35. 35.
    Brochier Salon M-C, Belgacem MN (2010) Competition between hydrolysis and condensation reactions of trialkoxysilanes, as a function of the amount of water and the nature of the organic group. Colloids Surf A: Physicochem Eng Asp 366(1–3):147–154.  https://doi.org/10.1016/j.colsurfa.2010.06.002 Google Scholar
  36. 36.
    Rao AV, Kulkarni MM, Amalnerkar DP, Seth T (2003) Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor. J Non-Cryst Solids 330:187–195.  https://doi.org/10.1016/j.jnoncrysol.2003.08.048 Google Scholar
  37. 37.
    Sharma RK, Das S, Maitra A (2004) Surface modified ormosil nanoparticles. J Colloid Interface Sci 277(2):342–346.  https://doi.org/10.1016/j.jcis.2004.04.019 Google Scholar
  38. 38.
    Macan J, Tadanaga K, Tatsumisago M (2010) Influence of copolymerization with alkyltrialkoxysilanes on condensation and thermal behaviour of poly(phenylsilsesquioxane) particles. J Sol-Gel Sci Technol 53(1):31–37.  https://doi.org/10.1007/s10971-009-2051-x Google Scholar
  39. 39.
    Jesson DA, Abel M-L, Hay JN, Smith PA, Watts JF (2006) Organic-inorganic hybrid nanoparticles: Surface characteristics and interactions with a polyester resin. Langmuir 22(11):5144–5151Google Scholar
  40. 40.
    Launer PJ (1987) Infrared analysis of organosilicon compounds: Spectra-structure correlations. In Anderson R, Arkles B, Larson GL (eds) Silicone Compounds Register and Review, 4th edn, pp 100–103Google Scholar
  41. 41.
    Nam K-H, Lee T-H, Bae B-S, Popall M (2006) Condensation reaction of 3-(methacryloxypropyl)-trimethoxysilane and diisobutylsilanediol in non-hydrolytic sol-gel process. J Sol-Gel Sci Technol 39(3):255–260.  https://doi.org/10.1007/s10971-006-7884-y Google Scholar
  42. 42.
    Komori Y, Nakashima H, Hayashi S, Sugahara Y (2005) Silicon-29 cross-polarization/magic-angle-spinning NMR study of inorganic–organic hybrids: homogeneity of sol–gel derived hybrid gels. J Non-Cryst Solids 351(2):97–103.  https://doi.org/10.1016/j.jnoncrysol.2004.10.005 Google Scholar
  43. 43.
    Loy DA, Jamison GM, Baugher BM, Russick EM, Assink RA, Prabakar S, Shea KJ (1995) Alkylene-bridged polysilsesquioxane aerogels: highly porous hybrid organic-inorganic materials. J Non-Cryst Solids 186:44–53Google Scholar
  44. 44.
    Li Z, Tolbert S, Loy DA (2013) Hybrid organic-inorganic membranes on porous supports by size exclusion and thermal sintering of fluorescent polyphenylsilsesquioxane nanoparticles. Macromol Mater Eng 298(7):715–721.  https://doi.org/10.1002/mame.201200091 Google Scholar
  45. 45.
    Deng T-S, Marlow F (2012) Synthesis of monodisperse polystyrene@vinyl-SiO2 core–shell particles and hollow SiO2 spheres. Chem Mater 24(3):536–542.  https://doi.org/10.1021/cm203099m Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Saarland University, Inorganic Solid State ChemistrySaarbrückenGermany

Personalised recommendations