Advertisement

Effect of the processing temperature on the electrical properties of lead-free 0.965Bi0.5Na0.5TiO3–0.035BaTiO3 piezoelectric ceramics synthesized by sol–gel method

  • Muhammad Munir
  • Muhammad Habib
  • Salman Ali Khan
  • Ali Hussain
  • Ibrahim Qazi
  • Yeon Bin Choi
  • Jeong-Hun Son
  • Rizwan Ahmad Malik
  • Dong-Sik BaeEmail author
Original Paper: Sol–gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • 24 Downloads

Abstract

In this work, lead-free 0.965Bi0.5Na0.5TiO3–0.035BaTiO3 (BNT–BT) piezoelectric ceramics were synthesized by a sol–gel process. X-ray diffraction pattern of the BNT–BT samples revealed that powder calcined at 600 °C, exhibit a pure perovskite structure. Scanning electron microscopy (SEM) was used to find the surface morphology and grain size of the investigated ceramics. At an optimized sintering temperature of 1150 °C, well-saturated ferroelectric (PE) hysteresis loops with high remnant polarization (Pr = 34.8 µC/cm2) and low corrosive field (Ec = 23 kV/cm) were obtained. Electric field-induced strain of 0.137% with a dynamic piezoelectric coefficient (d33* = 196 pm/V) was observed under 75 kV/cm drawing field. In addition, high static piezoelectric constant (d33 = 138 pC/N) was recorded for the sample sintered at 1150 °C. This value of d33 is comparable to that of BNT-based bulk piezoelectric ceramics.

BNT–BT nano-particles were prepared by using the acetic-acid sol–gel process, calcined at 600 °C and sintered at 1150 °C to get the optimum processing temperature. Well saturated and square type P–E hysteresis loops were obtanied with high remnant polarization (Pr = 34.8 µC/cm2) equivalent to the BNT-bulk ceramcis which were prepared through the conventional solid state reaction method [1, 2]. The high static piezoelectric constant 138 pC/N was obtained which is comparable to the BNT-based bulk ceramics [3]

Highlights

  • In this work, lead-free 0.965Bi0.5Na0.5TiO3–0.035BaTiO3 (BNT-BT) piezoelectric ceramics were synthesized by a sol-gel process.

  • X-ray diffraction pattern of the BNT-BT samples revealed that powder calcined at 600 °C, exhibit a pure perovskite structure.

  • Scanning electron microscopy (SEM) was used to find the surface morphology and grain size of the investigated ceramics. At an optimized sintering temperature of 1150 °C, well saturated ferroelectric (P–E) hysteresis loops with high remnant polarization (Pr = 34.8 μC/cm2) and low corrosive field (Ec = 23 kV/cm) were obtained.

  • Electric field-induced strain of 0.137% with a dynamic piezoelectric coefficient (d33* = 196 pm/V) was observed under 75 kV/cm drawing field.

  • In addition, high static piezoelectric constant (d33 = 138 pC/N) was recorded for the sample sintered at 1150 °C.

  • This value of d33 is comparable to that of BNT-based bulk piezoelectric ceramics.

Keywords

Sol–gel Calcination Sintering Polarization Nano-particles Lead-free piezoelectric 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2011-0030058).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Malik RA, Hussain A, Zaman A, Maqbool A, Rahman JU, Song TK, Kim W-J, Kim M-H (2015) Correction: structure–property relationship in lead-free A-and B-site co-doped Bi0.5(Na0.84K0.16)0.5TiO3–SrTiO3 incipient piezoceramics. RSC Adv 5(125):96953–96964.  https://doi.org/10.1039/C5RA19107F CrossRefGoogle Scholar
  2. 2.
    Malik RA, Hussain A, Maqbool A, Zaman A, Song TK, Kim W-J, Kim M-H (2016) Giant strain, thermally-stable high energy storage properties and structural evolution of Bi-based lead-free piezoceramics. J Alloy Compd 682:302–310CrossRefGoogle Scholar
  3. 3.
    Maqbool A, Rahman J ur, Hussain A, Park JK, Park TG, Song JS, Kim MH (2014). Structure and temperature dependent electrical properties of lead-free Bi0.5Na0.5TiO3–SrZrO3 ceramics. In: IOP conference series: materials science and engineering. IOP Publishing, pp. 012047Google Scholar
  4. 4.
    Reichmann K, Feteira A, Li M (2015) Bismuth sodium titanate based materials for piezoelectric actuators. Materials 8(12):8467–8495CrossRefGoogle Scholar
  5. 5.
    Lu R, Yuan J, Shi H, Li B, Wang W, Wang D, Cao M (2013) Morphology-controlled synthesis and growth mechanism of lead-free bismuth sodium titanate nanostructures via the hydrothermal route. CrystEngComm 15(19):3984–3991CrossRefGoogle Scholar
  6. 6.
    Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D (2015) Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35(6):1659–1681CrossRefGoogle Scholar
  7. 7.
    Khan SA, Malik RA, Akram F, Hussain A, Song T-K, Kim W-J, Kim M-H (2018). Synthesis and electrical properties of 0.65Bi1.05Fe1-xGaxO3–0.35BaTiO3 piezoceramics by air quenching process. J Electroceram 41:60–66.  https://doi.org/10.1007/s10832-018-0153-y
  8. 8.
    McQuade RR, Dolgos MR (2016) A review of the structure–property relationships in lead-free piezoelectric (1− x)Na0.5Bi0.5TiO3–(x) BaTiO3. J Solid State Chem 242:140–147CrossRefGoogle Scholar
  9. 9.
    Mercadelli E, Galassi C, Costa AL, Albonetti S, Sanson A (2008) Sol–gel combustion synthesis of BNBT powders. J Sol–Gel Sci Technol 46(1):39–45CrossRefGoogle Scholar
  10. 10.
    Hiruma Y, Imai Y, Watanabe Y, Nagata H, Takenaka T (2008) Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3–SrTiO3 ferroelectric ceramics. Appl Phys Lett 92(26):262904CrossRefGoogle Scholar
  11. 11.
    Hiruma Y, Nagata H, Takenaka T (2009) Detection of morphotropic phase boundary of (Bi1/2Na1/2)TiO3–Ba(Al1/2Sb1/2)O3 solid-solution ceramics. Appl Phys Lett 95(5):052903CrossRefGoogle Scholar
  12. 12.
    Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J (2012) Giant electric-field-induced strains in lead-free ceramics for actuator applications–status and perspective. J Electroceram 29(1):71–93CrossRefGoogle Scholar
  13. 13.
    Xie H, Zhao Y, Yang L, Pang S, Yuan C, Wang H, Zhou C, Xu J (2018) Comparative studies on structure, dielectric, strain and energy storage properties of (Bi0.5Na0.5)0.94 Ba 0.06 Ti 0.965(Mg1/3Nb2/3)0.035O3 lead-free ceramics prepared by traditional and two-step sintering method. J Mater Sci: Mater Electron 29(7):5349–5355Google Scholar
  14. 14.
    Zaman A, Hussain A, Malik RA, Maqbool A, Nahm S, Kim M-H (2016) Dielectric and electromechanical properties of LiNbO3-modified (BiNa)TiO3–(BaCa)TiO3 lead-free piezoceramics. J Phys D 49(17):175301CrossRefGoogle Scholar
  15. 15.
    Ullah A, Alam M, Ullah A, Ahn CW, Lee J-S, Cho S, Kim IW (2016) High strain response in ternary Bi0.5Na0.5TiO3–BaTiO3–Bi(Mn0.5Ti0.5)O3 solid solutions. RSC Adv 6(68):63915–63921CrossRefGoogle Scholar
  16. 16.
    Li L, Hao J, Xu Z, Li W, Chu R (2016) 0.46% unipolar strain in lead-free BNT-BT system modified with Al and Sb. Mater Lett 184:152–156CrossRefGoogle Scholar
  17. 17.
    Rahman JU, Hussain A, Maqbool A, Ryu GH, Song TK, Kim W-J, Kim MH (2014) Field induced strain response of lead-free BaZrO3-modified Bi0.5Na0.5TiO3–BaTiO3 ceramics. J Alloy Compd 593:97–102CrossRefGoogle Scholar
  18. 18.
    Wang X, Or S, Tang X, Chan H, Choy P, Liu P (2005) TiO2-nonstoichiometry dependence on piezoelectric properties and depolarization temperature of (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Solid State Commun 134(10):659–663CrossRefGoogle Scholar
  19. 19.
    Kim CY, Sekino T, Niihara K (2003) Synthesis of bismuth sodium titanate nanosized powders by solution/sol–gel process. J Am Ceram Soc 86(9):1464–1467CrossRefGoogle Scholar
  20. 20.
    Ullah A, Ahn CW, Hussain A, Kim IW (2010) The effects of sintering temperatures on dielectric, ferroelectric and electric field-induced strain of lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics synthesized by the sol–gel technique. Curr Appl Phys 10(6):1367–1371CrossRefGoogle Scholar
  21. 21.
    Hammer M, Hoffmann MJ (1998) Detailed X-ray diffraction analyses and correlation of microstructural and electromechanical properties of La-doped PZT ceramics. J Electroceram 2(2):75–84CrossRefGoogle Scholar
  22. 22.
    Kalem V, Cam I, Timuçin M (2011) Dielectric and piezoelectric properties of PZT ceramics doped with strontium and lanthanum. Ceram Int 37(4):1265–1275CrossRefGoogle Scholar
  23. 23.
    Malič B, Koruza J, Hreščak J, Bernard J, Wang K, Fisher JG, Benčan A (2015) Sintering of lead-free piezoelectric sodium potassium niobate ceramics. Materials 8(12):8117–8146CrossRefGoogle Scholar
  24. 24.
    Rani R, Sharma S (2011) Influence of sintering temperature on densification, structure and microstructure of Li and Sb co-modified (K, Na) NbO3-based ceramics. Mater Sci Appl 2(10):1416Google Scholar
  25. 25.
    Maqbool A, Hussain A, Malik RA, Rahman JU, Zaman A, Song TK, Kim W-J, Kim M-H (2015) Evolution of phase structure and giant strain at low driving fields in Bi-based lead-free incipient piezoelectrics. Mater Sci Eng: B 199:105–112CrossRefGoogle Scholar
  26. 26.
    Cernea M, Poli G, Aldica GV, Berbecaru C, Vasile BS, Galassi C (2012) Preparation and properties of nanocrystalline BNT-BTx piezoelectric ceramics by sol-gel and spark plasma sintering. Curr Appl Phys 12(4):1100–1105CrossRefGoogle Scholar
  27. 27.
    Malik RA, Kang J-K, Hussain A, Ahn C-W, Han H-S, Lee J-S (2014) High strain in lead-free Nb-doped Bi1/2(Na0.84K0.16)1/2TiO3–SrTiO3 incipient piezoelectric ceramics. Appl Phys Express 7(6):061502CrossRefGoogle Scholar
  28. 28.
    Seo I-T, Steiner S, Frömling T (2017) The effect of A site non-stoichiometry on 0.94 (NayBix) TiO3-0.06 BaTiO3. J Eur Ceram Soc 37(4):1429–1436CrossRefGoogle Scholar
  29. 29.
    Malik RA, Hussain A, Zaman A, Maqbool A, Rahman JU, Song TK, Kim W-J, Kim M-H (2015) Structure–property relationship in lead-free A-and B-site co-doped Bi0.5(Na0.84K0.16)0.5TiO3–SrTiO3 incipient piezoceramics. RSC Adv 5(117):96953–96964CrossRefGoogle Scholar
  30. 30.
    Hiruma Y, Yoshii K, Nagata H, Takenaka T (2008) Phase transition temperature and electrical properties of (Bi1∕ 2Na1∕ 2)TiO3–(Bi1∕ 2A1∕ 2)TiO3(A=Li and K) lead-free ferroelectric ceramics. J Appl Phys. 103(8):084121CrossRefGoogle Scholar
  31. 31.
    Zhang J, Pan Z, Guo F-F, Liu W-C, Ning H, Chen Y, Lu M-H, Yang B, Chen J, Zhang S-T (2015) Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi 0.5 Na 0.5 TiO3-based lead-free piezoceramics. Nat Commun 6:6615CrossRefGoogle Scholar
  32. 32.
    Panda P (2009) Environmental friendly lead-free piezoelectric materials. J Mater Sci 44(19):5049–5062CrossRefGoogle Scholar
  33. 33.
    Zhang ST, Kounga AB, Aulbach E, Deng Y (2008) Temperature-dependent electrical properties of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics. J Am Ceram Soc 91(12):3950–3954CrossRefGoogle Scholar
  34. 34.
    Wei J, Fu D, Cheng J, Chen J (2017) Temperature dependence of the dielectric and piezoelectric properties of xBiFeO3–(1−x)BaTiO3 ceramics near the morphotropic phase boundary. J Mater Sci 52(18):10726–10737CrossRefGoogle Scholar
  35. 35.
    Seo I-T, Steiner S, Frömling T (2017) The effect of A site non-stoichiometry on 0.94(NayBix)TiO3-0.06 BaTiO3. J Eur Ceram Soc 37(4):1429–1436CrossRefGoogle Scholar
  36. 36.
    Hao J, Xu Z, Chu R, Li W, Du J, Fu P (2015) Large strain response and fatigue-resistant behavior in lead-free Bi0.5(Na0.80K0.20)0.5TiO3–(K0.5Na0.5)MO3 (M = Sb, Ta) ceramics. RSC Adv. 5(100):82605–82616CrossRefGoogle Scholar
  37. 37.
    Bai W, Bian Y, Hao J, Shen B, Zhai J (2013) The composition and temperature-dependent structure evolution and large strain response in (1−x)(Bi0.5Na0. 5)TiO3−xBa(Al0.5Ta0.5)O3 ceramics. J Am Ceram Soc 96(1):246–252CrossRefGoogle Scholar
  38. 38.
    Pham K-N, Hussain A, Ahn CW, Ill WK, Jeong SJ, Lee J-S (2010) Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics. Mater Lett. 64(20):2219–2222CrossRefGoogle Scholar
  39. 39.
    Li Y, Chen W, Zhou J, Xu Q, Sun H, Xu R (2004) Dielectric and piezoelecrtic properties of lead-free (Na0.5Bi0.5)TiO3–NaNbO3 ceramics. Mater Sci Eng: B. 112(1):5–9CrossRefGoogle Scholar
  40. 40.
    Hiruma Y, Aoyagi R, Nagata H, Takenaka T (2004) Piezoelectric properties of BaTiO3–(Bi1/2K1/2)TiO3 ferroelectric ceramics. Jpn J Appl Phys. 43(11R):7556CrossRefGoogle Scholar
  41. 41.
    Sasaki A, Chiba T, Mamiya Y, Otsuki E (1999) Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems. Jpn J Appl Phys 38(9S):5564CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Muhammad Munir
    • 1
  • Muhammad Habib
    • 1
  • Salman Ali Khan
    • 1
  • Ali Hussain
    • 2
  • Ibrahim Qazi
    • 2
  • Yeon Bin Choi
    • 1
  • Jeong-Hun Son
    • 1
  • Rizwan Ahmad Malik
    • 1
    • 3
  • Dong-Sik Bae
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringChangwon National UniversityGyeongnamRepublic of Korea
  2. 2.Department of Materials Science and EngineeringInstitute of Space TechnologyIslamabadPakistan
  3. 3.Department of Metallurgy and Materials EngineeringUET TaxilaTaxilaPakistan

Personalised recommendations