Advertisement

Journal of Sol-Gel Science and Technology

, Volume 85, Issue 3, pp 546–557 | Cite as

Hybrid sol–gel coatings based on GPTMS/TEOS containing colloidal SiO2 and cerium nitrate for increasing corrosion protection of aluminium alloy 7075-T6

  • Urša Tiringer
  • Ingrid Milošev
  • Alicia Durán
  • Yolanda CastroEmail author
Original Paper: Industrial and technological applications of sol-gel and hybrid materials

Abstract

One of the promising candidates to replace the chromate conversion coatings for corrosion protection of aluminium alloy AA7075 are the hybrid sol–gel coatings. In the present work hybrid silica sol–gel coatings doped with cerium nitrate were prepared and characterized. Tetraethoxysilane (TEOS) and 3-glycidoxypropyl-trimethoxysilane (GPTMS) were used as precursors. Silica SiO2 (Ludox) particles were added to achieve a barrier properties of coating, while Ce(NO3)3·6H2O was added in order to obtain an active corrosion protection. Optimization of sol synthesis was based on the results of ATR-FTIR spectroscopy and UV–vis–NIR spectroscopy. Opening of epoxy rings and completion of hydrolysis and the condensation reactions during the synthesis process were confirmed. Coatings were characterized through thickness, water contact angle, roughness, adhesion, electrochemical properties (potentiodynamic and electrochemical impedance spectroscopy) and the response to prolonged immersion time in 0.1 M NaCl. The high degree of cross-linking of Si–O–Si network structure and high density was achieved during the synthesis of the sol. Moreover, the results showed that the curing process and the incorporation of cerium nitrate into the hybrid sol–gel coating affected to the corrosion properties of the coating. The observed enhancement in corrosion protection properties is attributed to the combination of the barrier properties of the silica matrix with the active protection of the cerium nitrate.

Keywords

Aluminium alloy Sol–gel coatings Corrosion protection Barrier properties SiO2 nanoparticles Cerium inhibitor 

Notes

Acknowledgements

The authors acknowledge financial support from the Slovenian Research Agency (research core funding No. P2-0393 and the project 'Lightweight alloys based on aluminium as materials with increasing potential in transportation industry', ID J1-6734). The authors thank Aritz Iglesias, Desiré Ruiz and Eva Peiteado for the technical help at ICV (CSIC). The authors also thank Sheila Omar for all helpful advices. The measurements of sol viscosity were performed at the Nanotesla Institute Ljubljana. The authors thank Dr. Branka Mušič and Adis Šahinović for discussion and comments. The authors thank Prof. R.H. Pain for proof reading the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that thay have no conflict of interest.

References

  1. 1.
    Vargel C (2004) Corrosion of aluminum. 1st edn. Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  2. 2.
    Davis JR (1999) Corrosion of aluminum and aluminum alloys. ASM International, Novelty, OHIO, USAGoogle Scholar
  3. 3.
    Buchheit RG (1995) A compilation of corrosion potentials reported for intermetallic phases in aluminum alloys. J Electrochem Soc 142:3994–3996CrossRefGoogle Scholar
  4. 4.
    Milošev I, Rodič P (2016) Cerium chloride and acetate salts as corrosion inhibitors for aluminum alloy AA7075-T6 in sodium chloride solution. Corrosion 72:1021–1034Google Scholar
  5. 5.
    Birbilis N, Buchheit RG (2008) Investigation and discussion of characteristics for intermetallic phases common to aAluminum alloys as a function of solution pH. J Electrochem Soc 155:C117–C126CrossRefGoogle Scholar
  6. 6.
    Kufman G (2000) Introduction to aluminum alloys and tempers. 1st edn. ASM International, USAGoogle Scholar
  7. 7.
    Kendig MW, Buchheit RG (2003) Corrosion inhibition of aluminum and aluminum alloys by soluble chromates, chromate coatings, and chromate-free coatings. Corrosion 59:379–400CrossRefGoogle Scholar
  8. 8.
    Bibber JW (2001) An overview of nonhexavalent chromium conversion coatings—Part I: aluminum and its alloys. Met Finish 99:15–22CrossRefGoogle Scholar
  9. 9.
    Chou TP, Chandrasekaran C, Cao GZ (2003) Sol-gel-derived hybrid coatings for corrosion protection. J Sol-Gel Sci Technol 26:321–327CrossRefGoogle Scholar
  10. 10.
    Figueira RB, Silva CJR, Pereira EV (2014) Organic–inorganic hybrid sol–gel coatings for metal corrosion protection: a review of recent progress. J Coat Technol Res 12:1–35CrossRefGoogle Scholar
  11. 11.
    Rodič P, Iskra J, Milošev I (2014) A hybrid organic–inorganic sol–gel coating for protecting aluminium alloy 7075-T6 against corrosion in Harrison’s solution. J Sol-Gel Sci Technol 70:90–103CrossRefGoogle Scholar
  12. 12.
    Twite RL, Bierwagen GP (1998) Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Prog Org Coat 33:91–100CrossRefGoogle Scholar
  13. 13.
    Zheng S, Li J (2010) Inorganic–organic sol gel hybrid coatings for corrosion protection of metals. J Sol-Gel Sci Technol 54:174–187CrossRefGoogle Scholar
  14. 14.
    Wen J, Wilkes GL (1996) Organic/Inorganic hybrid network materials by the sol−gel approach. Chem Mater 8:1667–1681CrossRefGoogle Scholar
  15. 15.
    Wang H, Akid R (2008) Encapsulated cerium nitrate inhibitors to provide high-performance anti-corrosion sol–gel coatings on mild steel. Corros Sci 50:1142–1148CrossRefGoogle Scholar
  16. 16.
    Brinker CJ, Hurd CJ, Schunk PR, Frye GC, Ashley CS (1992) Review of sol-gel thin film formation. J Non-Cryst Solids 147:424–436CrossRefGoogle Scholar
  17. 17.
    Metroke TL, Parkhill RL, Knobbe ET (2001) Passivation of metal alloys using sol–gel-derived materials—a review. Prog Org Coat 41:233–238CrossRefGoogle Scholar
  18. 18.
    Livage J, Ganguli D (2001) Sol–gel electrochromic coatings and devices: a review. Sol Energy Mater Sol Cells 68:365–381CrossRefGoogle Scholar
  19. 19.
    Brinker CJ, Scherer GW (2013) Sol-Gel science: the physics and chemistry of sol-gel processing. Academic Press, Cambridge, Massachusetts, USAGoogle Scholar
  20. 20.
    Guglielmi M (1997) Sol-gel coatings on metals. J Sol-Gel Sci Technol 8:443–449Google Scholar
  21. 21.
    Han Y-H, Taylor A, Mantle MD, Knowles KM (2007) Sol–gel-derived organic–inorganic hybrid materials. J Non-Cryst Solids 353:313–320CrossRefGoogle Scholar
  22. 22.
    Mosa J, Durán A, Aparicio M (2009) Proton conducting sol–gel sulfonated membranes produced from 2-allylphenol, 3-glycidoxypropyl trimethoxysilane and tetraethyl orthosilicate. J Power Sources 192:138–143CrossRefGoogle Scholar
  23. 23.
    Voevodin NN, Kurdziel JW, Mantz R (2006) Corrosion protection for aerospace aluminum alloys by modified self-assembled nanophase particle (MSNAP) sol–gel. Surf Coat Technol 201:1080–1084CrossRefGoogle Scholar
  24. 24.
    Pirhady Tavandashti N, Sanjabi S, Shahrabi T (2011) Evolution of corrosion protection performance of hybrid silica based sol–gel nanocoatings by doping inorganic inhibitor. Mater Corros 62:411–415CrossRefGoogle Scholar
  25. 25.
    Schottner G (2001) Hybrid sol−gel-derived polymers: applications of multifunctional materials. Chem Mater 13:3422–3435CrossRefGoogle Scholar
  26. 26.
    Zheludkevich ML, Salvado IM, Ferreira MGS (2005) Sol–gel coatings for corrosion protection of metals. J Mater Chem 15:5099–5111CrossRefGoogle Scholar
  27. 27.
    Rosero-Navarro NC, Curioni M, Castro Y, Aparicio M, Thompson GE, Durán A (2011) Glass-like CexOy sol–gel coatings for corrosion protection of aluminium and magnesium alloys. Surf Coat Technol 206:257–264CrossRefGoogle Scholar
  28. 28.
    Zomorodian A, Brusciotti F, Fernandes A, Carmezim MJ, Moura e Silva T, JCS Fernandes, Montemor MF (2012) Anti-corrosion performance of a new silane coating for corrosion protection of AZ31 magnesium alloy in Hank’s solution. Surf Coat Technol 206:4368–4375CrossRefGoogle Scholar
  29. 29.
    Underhill PR, Goring G, DuQuesnay DL (1998) The drying of 3-glycidoxypropyltrimethoxy silane. Appl Surf Sci 134:247–253CrossRefGoogle Scholar
  30. 30.
    Davis SR, Brough AR, Atkinson A (2003) Formation of silica/epoxy hybrid network polymers. J Non-Cryst Solids 315:197–205CrossRefGoogle Scholar
  31. 31.
    Lakshmi RV, Yoganandan G, Mohan AVN, Basu BJ (2014) Effect of surface pre-treatment by silanization on corrosion protection of AA2024-T3 alloy by sol–gel nanocomposite coatings. Surf Coat Technol 240:353–360CrossRefGoogle Scholar
  32. 32.
    Wang H, Akid R (2007) A room temperature cured sol–gel anticorrosion pre-treatment for Al 2024-T3 alloys. Corros Sci 49:4491–4503CrossRefGoogle Scholar
  33. 33.
    Zheludkevich ML, Serra R, Montemor MF, Miranda Salvado IM, Ferreira MGS (2006) Corrosion protective properties of nanostructured sol–gel hybrid coatings to AA2024-T3. Surf Coat Technol 200:3084–3094CrossRefGoogle Scholar
  34. 34.
    Zheludkevich ML, Serra R, Montemor MF, Yasakau KA, Miranda Salvado IM, Ferreira MGS (2005) Nanostructured sol–gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3: corrosion protection performance. Electrochim Acta 51:208–217CrossRefGoogle Scholar
  35. 35.
    Roussi E, Tsetsekou A, Tsiourvas D, Karantonis A (2011) Novel hybrid organo-silicate corrosion resistant coatings based on hyperbranched polymers. Surf Coat Technol 205:3235–3244CrossRefGoogle Scholar
  36. 36.
    Schem M, Schmidt T, Gerwann J, Wittmar M, Veith M, Thompson GE, Molchan IS, Hashimoto T, Skeldon P, Phani AR, Santucci S, Zheludkevich ML (2009) CeO2-filled sol–gel coatings for corrosion protection of AA2024-T3 aluminium alloy. Corros Sci 51:2304–2315CrossRefGoogle Scholar
  37. 37.
    Wang H, Akid R, Gobara M (2010) Scratch-resistant anticorrosion sol–gel coating for the protection of AZ31 magnesium alloy via a low temperature sol–gel route. Corros Sci 52:2565–2570CrossRefGoogle Scholar
  38. 38.
    Khramov AN, Balbyshev VN, Voevodin NN, Donley MS (2003) Nanostructured sol–gel derived conversion coatings based on epoxy- and amino-silanes. Prog Org Coat 47:207–213CrossRefGoogle Scholar
  39. 39.
    Milošev I, Kapun B, Rodič P, Iskra J (2015) Hybrid sol–gel coating agents based on zirconium(IV) propoxide and epoxysilane. J Sol-Gel Sci Technol 74:447–459CrossRefGoogle Scholar
  40. 40.
    Zandi-zand R, Ershad-langroudi A, Rahimi A (2005) Silica based organic–inorganic hybrid nanocomposite coatings for corrosion protection. Prog Org Coat 53:286–291CrossRefGoogle Scholar
  41. 41.
    Sakka S (2005) Handbook of sol-gel science and technology. 2. Characterization and properties of sol-gel materials and products. Springer Science & Business MediaGoogle Scholar
  42. 42.
    Innocenzi P, Brusatin G, Babonneau F (2000) Competitive polymerization between organic and Inorganic networks in hybrid materials. Chem Mater 12:3726–3732CrossRefGoogle Scholar
  43. 43.
    Metroke TL, Kachurina O, Knobbe ET (2002) Spectroscopic and corrosion resistance characterization of GLYMO–TEOS Ormosil coatings for aluminum alloy corrosion inhibition. Prog Org Coat 44:295–305CrossRefGoogle Scholar
  44. 44.
    Santana I, Pepe A, Jimenez-Pique E, Pellice S, Milošev I, Ceré S (2015) Corrosion protection of carbon steel by silica-based hybrid coatings containing cerium salts: effect of silica nanoparticle content. Surf Coat Technol 265:106–116CrossRefGoogle Scholar
  45. 45.
    Ballarre J, Manjubala I, H Schreiner W, Orellano JC, Fratzl P, Ceré S (2010) Improving the osteointegration and bone-implant interface by incorporation of bioactive particles in sol-gel coatings of stainless steel implants. Acta Biomater 6:1601–1609CrossRefGoogle Scholar
  46. 46.
    Vreugdenhil AJ, Balbyshev VN, Donley MS (2001) Nanostructured silicon sol-gel surface treatments for Al 2024-T3 protection. J Coat Technol 73:35–43.Google Scholar
  47. 47.
    Peres RN, Cardoso ESF, Montemor MF, Melo HG, Benedetti AV, Suegama PH (2016) Influence of the addition of SiO2 nanoparticles to a hybrid coating applied on an AZ31 alloy for early corrosion protection. Surf Coat Technol 303(Part B):372–384CrossRefGoogle Scholar
  48. 48.
    Durán A, Castro Y, Aparicio M, Conde A, Damborenea JJ (2007) Protection and surface modification of metals with sol–gel coatings. Int Mater Rev 52:175–192CrossRefGoogle Scholar
  49. 49.
    Voevodin NN, Grebasch NT, Soto WS, Kasten LS, Grant JT, Arnold FE, Donley MS (2001) An organically modified zirconate film as a corrosion-resistant treatment for aluminum 2024-T3. Prog Org Coat 41:287–293CrossRefGoogle Scholar
  50. 50.
    Rosero-Navarro NC, Pellice SA, Castro Y, Aparicio M, Durán A (2009) Improved corrosion resistance of AA2024 alloys through hybrid organic–inorganic sol–gel coatings produced from sols with controlled polymerisation. Surf Coat Technol 203:1897–1903CrossRefGoogle Scholar
  51. 51.
    Khelifa F, Druart M-E, Habibi Y, Bénard F, Leclère P, Olivier M, Dubois P (2013) Sol–gel incorporation of silica nanofillers for tuning the anti-corrosion protection of acrylate-based coatings. Prog Org Coat 76:900–911CrossRefGoogle Scholar
  52. 52.
    Suegama PH, de Melo HG, Recco AAC, Tschiptschin AP, Aoki IV (2008) Corrosion behavior of carbon steel protected with single and bi-layer of silane films filled with silica nanoparticles. Surf Coat Technol 202:2850–2858CrossRefGoogle Scholar
  53. 53.
    Suegama PH, Recco AAC, Tschiptschin AP, Aoki IV (2007) Influence of silica nanoparticles added to an organosilane film on carbon steel electrochemical and tribological behaviour. Prog Org Coat 60:90–98CrossRefGoogle Scholar
  54. 54.
    Iribarren-Mateos JI, Buj-Corral I, Vivancos-Calvet J, Alemán C, Iribarren JI, Armelin E (2015) Silane and epoxy coatings: a bilayer system to protect AA2024 alloy. Prog Org Coat 81:47–57CrossRefGoogle Scholar
  55. 55.
    Hinton BRW (1992) Corrosion inhibition with rare earth metal salts. J Alloy Compd 180:15–25CrossRefGoogle Scholar
  56. 56.
    Hinton BRW, Arnott DR, Ryan NE (1984) Inhibition of aluminum alloy corrosion by cerous cations. ResearchGate 7:211–217Google Scholar
  57. 57.
    Revie RW, Uhlig HH (2008) Corrosion and corrosion control. Wiley, Hoboken, NJCrossRefGoogle Scholar
  58. 58.
    Zhong X, Li Q, Hu J, Yang X, Luo F, Dai Y (2010) Effect of cerium concentration on microstructure, morphology and corrosion resistance of cerium–silica hybrid coatings on magnesium alloy AZ91D. Prog Org Coat 69:52–56CrossRefGoogle Scholar
  59. 59.
    Rahimi H, Mozaffarinia R, Hojjati Najafabadi A (2013) Corrosion and wear resistance characterization of environmentally friendly sol–gel hybrid nanocomposite coating on AA5083. J Mater Sci Technol 29:603–608CrossRefGoogle Scholar
  60. 60.
    Balgude D, Konge K, Sabnis A (2013) Synthesis and characterization of sol–gel derived CNSL based hybrid anti-corrosive coatings. J Sol-Gel Sci Technol 69:155–165CrossRefGoogle Scholar
  61. 61.
    Scopel WL, Fantini MCA, Alayo MI, Pereyra I (2002) Local order structure of a-SiOxNy:H grown by PECVD. Braz J Phys 32:366–368CrossRefGoogle Scholar
  62. 62.
    Mosa J, Durán A, Aparicio M (2010) Epoxy-polystyrene-silica sol–gel membranes with high proton conductivity by combination of sulfonation and tungstophosphoric acid doping. J Membr Sci 361:135–142CrossRefGoogle Scholar
  63. 63.
    Crivello JV, Liu S (2000) Photoinitiated cationic polymerization of epoxy alcohol monomers. J Polym Sci Part Polym Chem 38:389–401CrossRefGoogle Scholar
  64. 64.
    Cambon J-B, Esteban J, Ansart F, Bonino J-P, Turq V, Santagneli SH, Santilli CV, Pulcinelli SH (2012) Effect of cerium on structure modifications of a hybrid sol–gel coating, its mechanical properties and anti-corrosion behavior. Mater Res Bull 47:3170–3176CrossRefGoogle Scholar
  65. 65.
    Castro Y, Ferrari B, Moreno R, Durán A (2004) Coatings produced by electrophoretic deposition from nano-particulate silica sol–gel suspensions. Surf Coat Technol 182:199–203CrossRefGoogle Scholar
  66. 66.
    Paussa L, Rosero-Navarro NC, Andreatta F, Castro Y, Duran A, Aparicio M, Fedrizzi L (2010) Inhibition effect of cerium in hybrid sol–gel films on aluminium alloy AA2024. Surf Interface Anal 42:299–305CrossRefGoogle Scholar
  67. 67.
    Rosero-Navarro NC, Pellice SA, Durán A, Aparicio M (2008) Effects of Ce-containing sol–gel coatings reinforced with SiO2 nanoparticles on the protection of AA2024. Corros Sci 50:1283–1291CrossRefGoogle Scholar
  68. 68.
    Volarič B, Milošev I (2017) Rare earth chloride and nitrate salts as individual and mixed inhibitors for aluminium alloy 7075-T6 in chloride solution. Corros Eng Sci Technol 52:201–211.CrossRefGoogle Scholar
  69. 69.
    Volaric B, Rodic P, Milosev I (2015) Cerium and lanthanum salts used as individual and combined inhibitors for corrosion protection of AA7075-T6 in chloride solution. Meet Abstr 2015-02:685–685Google Scholar
  70. 70.
    Rodič P, Milošev I (2016) Corrosion inhibition of pure aluminium and alloys AA2024-T3 and AA7075-T6 by cerium(III) and cerium(IV) salts. J Electrochem Soc 163:C85–C93CrossRefGoogle Scholar
  71. 71.
    Marcus P, Mansfeld F B (2005) Analytical methods in corrosion science and engineering. CRC Press. https://www.crcpress.com/Analytical-Methods-In-Corrosion-Science-and-Engineering/Marcus-Mansfeld/p/book/9780824759520. Accessed 4 Dec 2017
  72. 72.
    Rosace G, Guido E, Colleoni C, Brucale M, Piperopoulos E, Milone C, Plutino MR (2017) Halochromic resorufin-GPTMS hybrid sol-gel: chemical-physical properties and use as pH sensor fabric coating. Sens Actuators B Chem 241:85–95CrossRefGoogle Scholar
  73. 73.
    Mansfeld F, Wang Y (1995) Development of “stainless” aluminum alloys by surface modification. Mater Sci Eng A 198:51–61CrossRefGoogle Scholar
  74. 74.
    Rosero-Navarro NC, Paussa L, Andreatta F, Castro Y, Durán A, Aparicio M, Fedrizzi L (2010) Optimization of hybrid sol–gel coatings by combination of layers with complementary properties for corrosion protection of AA2024. Prog Org Coat 69:167–174CrossRefGoogle Scholar
  75. 75.
    Lakshmi RV, Aruna ST, Sampath S (2017) Ceria nanoparticles vis-à-vis cerium nitrate as corrosion inhibitors for silica-alumina hybrid sol-gel coating. Appl Surf Sci 393:397–404CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physical and Organic ChemistryJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Jožef Stefan Postgraduate SchoolLjubljanaSlovenia
  3. 3.Campus de CantoblancoInstituto de Cerámica y Vidrio (CSIC)MadridSpain

Personalised recommendations