Journal of Sol-Gel Science and Technology

, Volume 84, Issue 2, pp 349–360 | Cite as

Characterization and reactivity of zirconia-doped phosphate ion catalyst prepared by sol–gel route and mechanistic study of acetic acid esterification by ethanol

  • S. Ben NsirEmail author
  • M. K. Younes
  • A. Rives
  • A. Ghorbel
Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications


Phosphated zirconia prepared by sol–gel method has been used as catalyst in esterification reaction of acetic acid with ethanol. Optimization of different preparation parameters on the catalyst was studied, such as the effect of molar ratio n P/n Zr, surfactant assisted synthesis, calcination temperature, and the effect of the drying mode. Catalysts were characterized by N2 physisorption at −196 °C, X-ray diffraction, FTIR spectroscopy, and 31P MAS NMR spectroscopy. The obtained results show that an increase in phosphate content partially inhibits the development of tetragonal t-ZrP phase and leads to a rise of both specific area and pore size of the catalyst. Besides, the introduction of the surfactant in the preparation step develops this phase and enhances the size of pores, but decreases specific area. However, calcination of the catalyst allows the development of tetragonal ZrO2 phase and causes the disappearance of ZrP phase. The evacuation of the solvent at its supercritical conditions promotes the development of both tetragonal phase of zirconia and pore size but slows that of the phases related to the ZrP species. Catalytic properties of acid esterification by ethanol were correlated to catalyst characteristic data, suggesting that t-ZrP phase and doping agent-support interaction stabilize active sites of the catalyst. Kinetic and mechanism study shows that catalytic reaction occurs with a first order and takes place through Eley–Rideal mechanism in which adsorbed acetic acid species react with ethanol in fluid phase to form corresponding ester. Application of Eyring theory shows that the adsorption step is characterized by an endothermic character and a rapid associative mechanism occurs between adsorbed species and the second reactant.

Graphical abstract

Eley–Rideal mechanism of acetic acid esterification by ethanol over xerogel catalyst XZrP0.05 Open image in new window


Aerogel Xerogel Zirconia Phosphate ion Esterification Acetic acid 



We thank Mr. Betrand REVEL, engineer in Nuclear Magnetic Resonance Platform in University of Science and Technology Lille 1, France for providing the necessary facility for 31P MAS NMR study of the catalysts.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Ahmad M, Khan MA, Zafar M, Sultana S (2012) Practical handbook on biodiesel production and properties, Boca Raton, CRC PressGoogle Scholar
  2. 2.
    Ramachandran K, Suganya T, Nagendra Gandhi N, Renganathan S (2013) Renew Sust Energ Rev 22:410–418CrossRefGoogle Scholar
  3. 3.
    Corma A, Garcia H, Iborra S, Primo J (1989) J Catal 120:78CrossRefGoogle Scholar
  4. 4.
    Gimenez J, Costa J, Cevera S (1987) Ind Eng Chem 26:198CrossRefGoogle Scholar
  5. 5.
    Verhoef JM, Kooyman JP, Peters AJ, Van Bekkum H (1999) Microporous Mesoporous Mater 27:365CrossRefGoogle Scholar
  6. 6.
    Wong MS, Antonelli DM, Ying JY (1997) Nanostruct Mater 9:165–168CrossRefGoogle Scholar
  7. 7.
    Patel A, Brahmkhatri V, Singh N (2013) Renew Energy 51:227–233CrossRefGoogle Scholar
  8. 8.
    Parida KM, Pattnayak PK (1996) J Colloid Interface Sci 182:381–387CrossRefGoogle Scholar
  9. 9.
    Hammache S, Goodwin Jr JG (2003) J Catal 218:258–266CrossRefGoogle Scholar
  10. 10.
    Garcia CM, Teixeira S, Marciniuk LL, Schuchardt U (2008) Bioresour Technol 99:6608–6613CrossRefGoogle Scholar
  11. 11.
    Ikeda Y, Asadullah M, Fujimoto K, Tomishige K (2001) J Phys Chem B 105:10653–10658CrossRefGoogle Scholar
  12. 12.
    Stichert W, Schüth F (1998) Chem Mater 10:2020–2026CrossRefGoogle Scholar
  13. 13.
    Mejri I, Younes MK, Ghorbel A, Eloy P, Gaigneaux EM (2006) Stud Surf Sci Catal 162:953–960CrossRefGoogle Scholar
  14. 14.
    Hamouda BL, Ghorbel A (2000) J Sol–Gel Sci Technol 19:413CrossRefGoogle Scholar
  15. 15.
    Chuah GK, Liu SH, Jaenicke S, Harrison LJ (2001) J Catal 200:352–359CrossRefGoogle Scholar
  16. 16.
    Kamoun N, Younes MK, Ghorbel A, Mamede AS, Rives A (2014) Reac Kinet Mech Catal 111:199–213CrossRefGoogle Scholar
  17. 17.
    Raissi S, Kamoun N, Younes MK, Ghorbel A (2015) Reac Kinet Mech Catal 115:499–512CrossRefGoogle Scholar
  18. 18.
    Holm VCF, Bailey GC, Clark A (1959) J Phys Chem 63:129–133CrossRefGoogle Scholar
  19. 19.
    Mekhemer GAH, Ismail HM (2000) Colloids Surf A 164:227–235CrossRefGoogle Scholar
  20. 20.
    Bart HI, Kaltenbrunner W, Landschutzer H (1996) Int J Chem Kinet 28:649–656CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Ma L, Yang J (2004) React Funct Polym 61:101–114CrossRefGoogle Scholar
  22. 22.
    Liu J, Lu B, Liu J, Zhang Y, Wei Y (2011) Ceram Int 37:843–849CrossRefGoogle Scholar
  23. 23.
    Yuan Z-Y, Ren T-Z, Azioune A, Pireaux J-J, Su B-L (2005) Catal Today 105:647–654CrossRefGoogle Scholar
  24. 24.
    Pattnayak PK, Parida KM (2000) J Colloid Interface Sci 226:340–345CrossRefGoogle Scholar
  25. 25.
    Jesser HD, Goswami PC (1989) Chem Rev 89:765–788CrossRefGoogle Scholar
  26. 26.
    Das SK, Bhunia MK, Sinha AK, Bhaumik A (2011) ACS Catal 1:493–501CrossRefGoogle Scholar
  27. 27.
    De la Rosa JR, Hernandez A, Rojas F, Ledezma JJ (2008) Colloids Surf A 315:147–155CrossRefGoogle Scholar
  28. 28.
    Mekhemer GAH (1998) Colloids Surf A 141:227–235CrossRefGoogle Scholar
  29. 29.
    Ali AAM, Zaki MI (2002) Thermochim Acta 387:29–38CrossRefGoogle Scholar
  30. 30.
    Sun Y, Afanasiev P, Vrinat M, Coudurier G (2000) J Mater Chem 10:2320–2324CrossRefGoogle Scholar
  31. 31.
    Zyuzina DA, Cherepanova SV, Moroz EM, Burgina EB, Sadykov VA, Kostrovskii VG, Matyshak VA (2006) J Solid State Chem 179:2965–2971CrossRefGoogle Scholar
  32. 32.
    Romano R, Alves LO (2005) J Incl Phenom Macrocycl 51:211–217CrossRefGoogle Scholar
  33. 33.
    Spielbauer D, Mekhemer GAH, Riemer T, Zaki MI, Knozinger H (1997) J Phys Chem B 101:4681–4688CrossRefGoogle Scholar
  34. 34.
    Orsley SE, Towell DV, Stewart DT (1974) Spectrochim Acta 30:535–541CrossRefGoogle Scholar
  35. 35.
    Phillippi CM, Mazdiyasni KS (1971) J Am Ceram Soc 54:254CrossRefGoogle Scholar
  36. 36.
    Kirumakki SR, Nagaraju N, Chary KVR (2006) Appl Catal A 299:185–192CrossRefGoogle Scholar
  37. 37.
    Liu W, Yin P, Zhang J, Tang Q, Qu R (2014) Energy Convers Manage 82:83–91CrossRefGoogle Scholar
  38. 38.
    Song C, Qi Y, Deng T, Hou X, Qin Z (2010) Renew Energy 35:625–628CrossRefGoogle Scholar
  39. 39.
    Rooney JJ, Mol J (1998) J Mol Catal A 129:131–134CrossRefGoogle Scholar
  40. 40.
    Rooney JJ, Mol J (1995) J Mol Catal A 96:Ll–L3CrossRefGoogle Scholar
  41. 41.
    Calvar N, Gonzalez B, Dominguez A (2007) Chem Eng Process 46:1317–1323CrossRefGoogle Scholar
  42. 42.
    Lu X, Yin H, Shen L, Feng Y, Wang A, Shen Y, Hang H, Mao D (2014) React Kinet Mech Catal 111:15–27CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • S. Ben Nsir
    • 1
    • 2
    Email author
  • M. K. Younes
    • 1
  • A. Rives
    • 2
  • A. Ghorbel
    • 1
  1. 1.Université de Tunis El Manar, Faculté des Sciences de TunisTunisTunisia
  2. 2.Univ. Lille, UMR 8181 - UCCS - Unité de Catalyse et de Chimie du SolideLilleFrance

Personalised recommendations