Journal of Sol-Gel Science and Technology

, Volume 84, Issue 1, pp 110–117 | Cite as

SiO 2 shell formation mechanism and enlargement on hydrophobized nanoparticles via a reverse microemulsion process

  • Kiyofumi KatagiriEmail author
  • Masaya Narahara
  • Kaori Sako
  • Kei Inumaru
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


The formation mechanism of SiO2 shells on oleate-modified inorganic nanoparticles by a reverse microemulsion method was investigated by dynamic light scattering measurements. Changes in the hydrodynamic diameter upon addition of the nonionic surfactant, Igepal CO-520, and ammonia water revealed that the surfactant-exchange and aqueous layer formation took place at the surface of the inorganic nanoparticles. The aqueous layer functioned as a reaction site for SiO2 shell formation. The proposed mechanism explains how core-shell particles having a single core are obtained. Additionally, the limitation of a maximum core-shell particle size obtained by this process can also be explained by the proposed mechanism. SiO2 shell growth was further examined by consideration of this mechanism. Incremental addition of Igepal CO-520 and ammonia was observed to facilitate the expansion of a reverse microemulsion layer surrounding the Fe3O4 nanoparticles and the continuing growth of the SiO2 shell. Further growth of the SiO2 shell can also be achieved by the Stöber process. The core-shell particles can grow to diameters in excess of 100 nm while maintaining narrow particle size distributions and a single-core structure is obtained throughout. The approach presented here offers a way to fabricate various core-shell particles comprising hydrophobized inorganic nanoparticles and SiO2 shells, which have potential for biomedical practical applications.

Graphical abstract

Open image in new window


Core-shell particle SiO2 coating Oleate-modified nanoparticle Reverse microemulsion Dynamic light scattering 



This work was supported by JSPS KAKENHI Grant Number JP16K14388, JP17H03392, JP17H05483. This work was partly supported by JST ACT-C Grant Number JPMJCR12Y2, Japan, and by the Center for Functional Nano Oxide at Hiroshima University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10971_2017_4479_MOESM1_ESM.docx (292 kb)
Supplementary information


  1. 1.
    Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946CrossRefGoogle Scholar
  2. 2.
    Rajamathia M, Seshadri R (2002) Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions. Curr Opin Solid State Mater Sci 6:337–345CrossRefGoogle Scholar
  3. 3.
    Thanh NTK, Green LAW (2010) Functionalisation of nanoparticles for biomedical applications. Nano Today 5:213–230CrossRefGoogle Scholar
  4. 4.
    Rao CN, Ramakrishna Matte HS, Voggu R, Govindaraj A (2012) Recent progress in the synthesis of inorganic nanoparticles. Dalton Trans 7:5089–5120CrossRefGoogle Scholar
  5. 5.
    Yu WW, Chang E, Drezek R, Colvin VL (2006) Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun 29:781–786CrossRefGoogle Scholar
  6. 6.
    Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41CrossRefGoogle Scholar
  7. 7.
    Cheon J, Lee JH (2008) Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res 41:1630–1640CrossRefGoogle Scholar
  8. 8.
    Sharma P, Brown S, Walter G, Santra S, Moudgil B (2006) Nanoparticles for bioimaging. Adv Colloid Interface Sci 123–126:471–485CrossRefGoogle Scholar
  9. 9.
    Zrazhevskiy P, Sena M, Gao X (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39:4326–4354CrossRefGoogle Scholar
  10. 10.
    Erathodiyil N, Ying JY (2011) Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 44:925–935CrossRefGoogle Scholar
  11. 11.
    Yang HH, Zhang SQ, Chen XL, Zhuang ZX, Xu JG, Wang XR (2004) Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal Chem 76:1316–1321CrossRefGoogle Scholar
  12. 12.
    Berry CC (2009) Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 42:224003CrossRefGoogle Scholar
  13. 13.
    Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167CrossRefGoogle Scholar
  14. 14.
    Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265CrossRefGoogle Scholar
  15. 15.
    Mao X, Xu J, Cui H (2016) Functional nanoparticles for magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:814–841CrossRefGoogle Scholar
  16. 16.
    Hayashi K, Nakamura M, Sakamoto W, Yogo T, Miki H, Ozaki S, Abe M, Matsumoto T, Ishimura K (2013) Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostic 3:366–376CrossRefGoogle Scholar
  17. 17.
    Katagiri K, Ohta K, Sako K, Inumaru K, Hayashi K, Sasaki Y, Akiyoshi K (2014) Development and potential theranostic applications of a self-assembled hybrid of magnetic nanoparticle clusters with polysaccharide nanogels. ChemPlusChem 79:1631–1637CrossRefGoogle Scholar
  18. 18.
    Jordan A, Scholz R, Wust P, Fahling H, Felix R (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419CrossRefGoogle Scholar
  19. 19.
    Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11CrossRefGoogle Scholar
  20. 20.
    Katagiri K, Nakamura M, Koumoto K (2010) Magnetoresponsive smart capsules formed with polyelectrolytes, lipid bilayers and magnetic nanoparticles. ACS Appl Mater Interfaces 2:768–773CrossRefGoogle Scholar
  21. 21.
    Katagiri K, Imai Y, Koumoto K, Kaiden T, Kono K, Aoshima S (2011) Magnetoresponsive on-demand release of hybrid liposomes formed from Fe3O4 nanoparticles and thermosensitive block copolymers. Small 7:1683–1689CrossRefGoogle Scholar
  22. 22.
    Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166CrossRefGoogle Scholar
  23. 23.
    Taniguchi T, Watanabe T, Katsumata K, Okada K, Matsushita N (2010) Synthesis of amphipathic YVO4:Eu3+ nanophosphors by oleate-modified nucleation/hydrothermal-growth process. J Phys Chem C 114:3763–3769CrossRefGoogle Scholar
  24. 24.
    Nguyen TD (2013) From formation mechanisms to synthetic methods toward shape-controlled oxide nanoparticles. Nanoscale 5:9455–9482CrossRefGoogle Scholar
  25. 25.
    Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG (2004) Chemically prepared magnetic nanoparticles. Int Mater Rev 49:125–170CrossRefGoogle Scholar
  26. 26.
    Gopalakrishnan G, Danelon C, Izewska P, Prummer M, Bolinger PY, Geissbühler I, Demurtas D, Dubochet J, Vogel H (2006) Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angew Chem Int Ed Engl 45:5478–5483CrossRefGoogle Scholar
  27. 27.
    Demirer GS, Okur AC, Kizilel S (2015) Synthesis and design of biologically inspired biocompatible iron oxide nanoparticles for biomedical applications. J Mater Chem B 3:7831–7849CrossRefGoogle Scholar
  28. 28.
    Mallakpour S, Madani M (2015) A review of current coupling agents for modification of metal oxide nanoparticles. Prog Org Coat 86:194–207CrossRefGoogle Scholar
  29. 29.
    Barnakov YA, Yu MH, Rosenzweig Z (2005) Manipulation of the magnetic properties of magnetite-silica nanocomposite materials by controlled Stober synthesis. Langmuir 21:7524–7527CrossRefGoogle Scholar
  30. 30.
    Li T, Moon J, Morrone AA, Mecholsky JJ, Talham DR, Adair JH (1999) Preparation of Ag/SiO2 nanosize composites by a reverse micelle and sol−gel technique. Langmuir 15:4328–4334CrossRefGoogle Scholar
  31. 31.
    Nann T, Mulvaney P (2004) Single quantum dots in spherical silica particles. Angew Chem Int Ed Engl 43:5393–5396CrossRefGoogle Scholar
  32. 32.
    Darbandi M, Thomann R, Nann T (2005) Single quantum dots in silica spheres by microemulsion synthesis. Chem Mater 17:5720–5725CrossRefGoogle Scholar
  33. 33.
    Koole R, van Schooneveld MM, Hilhorst J, de Mello Donega C, ‘t Hart DC, van Blaaderen A, Vanmaekelbergh DAM, Meijerink A (2008) On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method. Chem Mater 20:2503–2512CrossRefGoogle Scholar
  34. 34.
    Vogt C, Toprak MS, Muhammed M, Laurent S, Bridot JL, Müller RN (2010) High quality and tuneable silica shell–magnetic core nanoparticles. J Nanopart Res 12:1137–1147CrossRefGoogle Scholar
  35. 35.
    Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán LM (2010) Recent progress on silica coating of nanoparticles and related nanomaterials. Adv Mater 22:1182–1195CrossRefGoogle Scholar
  36. 36.
    Fang Y, Loc WS, Lu W, Fang J (2011) Synthesis of In2O3@SiO2 core-shell nanoparticles with enhanced deeper energy level emissions of In2O3. Langmuir 27:14091–14095CrossRefGoogle Scholar
  37. 37.
    Ding HL, Zhang YX, Wang S, Xu JM, Xu SC, Li GH (2012) Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mater 24:4572–4580CrossRefGoogle Scholar
  38. 38.
    Lee DC, Mikulec FV, Pelaez JM, Koo B, Korgel BA (2006) Synthesis and magnetic properties of silica-coated FePt nanocrystals. J Phys Chem B 110:11160–11166CrossRefGoogle Scholar
  39. 39.
    Koole R, van Schooneveld MM, Hilhorst J, Castermans K, Cormode DP, Strijkers GJ, de Mello Donegá C, Vanmaekelbergh D, Griffioen AW, Nicolay K, Fayad ZA, Meijerink A, Mulder WJ (2008) Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging. Bioconjug Chem 19:2471–2479CrossRefGoogle Scholar
  40. 40.
    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392Google Scholar
  41. 41.
    Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71:409–419CrossRefGoogle Scholar
  42. 42.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  43. 43.
    Nakamura M, Katagiri K, Koumoto K (2010) Preparation of hybrid hollow capsules formed with Fe3O4 and polyelectrolytes via the layer-by-layer assembly and the aqueous solution process. J Colloid Interface Sci 341:64–68CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Kiyofumi Katagiri
    • 1
    Email author
  • Masaya Narahara
    • 1
  • Kaori Sako
    • 1
  • Kei Inumaru
    • 1
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations