Journal of Sol-Gel Science and Technology

, Volume 84, Issue 1, pp 158–168 | Cite as

Investigation of low Ce amount doped-TiO2 prepared by using pressurized fluids in photocatalytic N2O decomposition and CO2 reduction

  • Lenka MatějováEmail author
  • Marcel Šihor
  • Jaroslav Lang
  • Ivana Troppová
  • Nela Ambrožová
  • Martin Reli
  • Tereza Brunátová
  • Libor Čapek
  • Andrzej Kotarba
  • Kamila Kočí
Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications


Ce doped TiO2 anatase/brookite composites with 0.6–5.5 wt% of Ce, as well as parent TiO2 anatase/brookite were synthesized to be investigated in two environmentally-beneficial reactions, the photocatalytic decomposition of N2O and the photocatalytic reduction of CO2. Composites were prepared unconventionally, by using sol–gel method combined with the processing by pressurized hot fluids (in the sequence water/methanol/water). The physicochemical and electronic properties of all synthesized composites were characterized by organic elementary analysis, nitrogen physisorption, powder X-ray diffraction, X-ray fluorescence spectroscopy, diffuse reflectance UV-vis spectroscopy and work function measurements. It was revealed that all composites show comparable textural properties, crystallite size, as well as optical properties, except for the 5.5 wt% Ce/TiO2 composite which showed significantly lowered band gap energy due to the significantly higher population of Ce. Concerning the composite structural properties, the addition of different amounts of Ce in the range of 0.6–5.5 wt% affected markedly the phase composition of composites, namely the anatase-to-brokite weight ratio. Concerning the photocatalytic tests the 5.5 wt% Ce/TiO2 composite showed the highest photocatalytic performance. The highest photocatalytic performance of the 5.5 wt% Ce/TiO2 composite can be attributed to the lowest composite work function which is affected by both the amount of Ce, as well as the phase composition.

Graphical Abstract

Open image in new window


Cerium Anatase/Brookite Pressurized hot fluid Photocatalysis Work function 



The financial support of the Grant Agency of the Czech Republic (Project Reg. No. 14-23274S) is gratefully acknowledged. Authors also thank to the support of the “National Feasibility Program I” (Project LO1208 “TEWEP”) from The Ministry of Education, Youth, and Sports of the Czech Republic.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.


  1. 1.
    Matsuoka M, Ju W-S, Yamashita H, Anpo M (2003) In situ characterization of the Ag+ ion-exchanged zeolites and their photocatalytic activity for the decomposition of N2O into N2 and O2 at 298 K. J Photoch Photobio A 160:43–46CrossRefGoogle Scholar
  2. 2.
    Ju W-S, Matsuoka M, Anpo M (2003) Incorporation of silver (I) ions within zeolite cavities and their photocatalytic reactivity for the decomposition of N2O into N2 and O2. Int J Photoenergy 5:17–19CrossRefGoogle Scholar
  3. 3.
    Matsuoka M, Takahashi K, Yamashita H, Anpo M (1997) Local structures of copper ion catalysts anchored onto various oxide supports and their photocatalytic reactivities for the decomposition of N2O at 298 K. In situ XAFS, photoluminescence, EPR investigations. J De Physique IV 7:943–944Google Scholar
  4. 4.
    Matsuoka M, Ju WS, Takahashi K, Yamashita H, Anpo M (2000) Photocatalytic decomposition of N2O into N-2 and O-2 at 298 K on Cu(I) ion catalysts anchored onto various oxides. The effect of the coordination state of the Cu(I) ions on the photocatalytic reactivity. J Phys Chem B 104:4911–4915CrossRefGoogle Scholar
  5. 5.
    Kočí K, Matějová L, Obalová L, Čapek L, Wu JCS (2015) Preparation, characterization and photocatalytic performance of TiO2 prepared by using pressurized fluids in CO2 reduction and N2O decomposition. J Sol-Gel Sci Technol 76:621–629CrossRefGoogle Scholar
  6. 6.
    Kočí K, Krejčíková S, Šolcová O, Obalová L (2012) Photocatalytic decomposition of N2O on Ag-TiO2. Catal Today 191:134–137CrossRefGoogle Scholar
  7. 7.
    Sano T, Negishi N, Mas D, Takeuchi K (2000) Photocatalytic decomposition of N2O on highly dispersed Ag+ Ions on TiO2 prepared by photodeposition. J Catal 194:71–79CrossRefGoogle Scholar
  8. 8.
    Koci K, Reli M, Troppova I, Sihor M, Kupkova J, Kustrowski P, Praus P (2017) Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction. Appl Surf Sci 396:1685–1695CrossRefGoogle Scholar
  9. 9.
    Matějová L, Šihor M, Brunátová T, Ambrožová N, Reli M, Čapek L, Obalová L, Kočí K (2015) Microstructure-performance study of cerium-doped TiO2 prepared by using pressurized fluids in photocatalytic mitigation of N2O. Res Chem Intermed 41:9217–9231CrossRefGoogle Scholar
  10. 10.
    Kočí K, Obalová L, Matějová L, Plachá D, Lacný Z, Jirkovský J, Šolcová O (2009) Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl Catal B 89:494–502CrossRefGoogle Scholar
  11. 11.
    Matej Z, Matejova L, Kuzel R (2013) XRD analysis of nanocrystalline anatase powders prepared by various chemical routes: correlations between micro-structure and crystal structure parameters. Powder Diffr 28:S161–S183CrossRefGoogle Scholar
  12. 12.
    Das S, Wan Daud WMA (2014) Photocatalytic CO2 transformation into fuel: A review on advances in photocatalyst and photoreactor. Renew Sust Energ Rev 39:765–805CrossRefGoogle Scholar
  13. 13.
    Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie 52:7372–7408CrossRefGoogle Scholar
  14. 14.
    Li K, An X, Park KH, Khraisheh M, Tang J (2014) A critical review of CO2 photoconversion: Catalysts and reactors. Catal Today 224:3–12CrossRefGoogle Scholar
  15. 15.
    Zhang Z, Huang Z, Cheng X, Wang Q, Chen Y, Dong P, Zhang X (2015) Product selectivity of visible-light photocatalytic reduction of carbon dioxide using titanium dioxide doped by different nitrogen-sources. Appl Surf Sci 355:45–51CrossRefGoogle Scholar
  16. 16.
    Tahir M, Tahir B, Amin NAS (2015) Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation. Appl Surf Sci 356:1289–1299CrossRefGoogle Scholar
  17. 17.
    Liu Y, Zhou S, Li J, Wang Y, Jiang G, Zhao Z, Liu B, Gong X, Duan A, Liu J, Wei Y, Zhang L (2015) Photocatalytic reduction of CO2 with water vapor on surface La-modified TiO2 nanoparticles with enhanced CH4 selectivity. Appl Catal B 168–169:125–131CrossRefGoogle Scholar
  18. 18.
    Kočí K, Matějová L, Reli M, Čapek L, Matějka V, Lacný Z, Kustrowski P, Obalová L (2014) Sol–gel derived Pd supported TiO2-ZrO2 and TiO2 photocatalysts; their examination in photocatalytic reduction of carbon dioxide. Catal Today 230:20–26CrossRefGoogle Scholar
  19. 19.
    Matejova L, Koci K, Reli M, Capek L, Hospodkova A, Peikertova P, Matej Z, Obalova L, Wach A, Kustrowski P, Kotarba A (2014) Preparation, characterization and photocatalytic properties of cerium doped TiO2: On the effect of Ce loading on the photocatalytic reduction of carbon dioxide. Appl Catal B-Environ 152:172–183CrossRefGoogle Scholar
  20. 20.
    Matějová L, Matěj Z, Fajgar R, Cajthaml T, Šolcová O (2012) TiO2 powders synthesized by pressurized fluid extraction and supercritical drying: Effect of water and methanol on structural properties and purity. Mater Res Bull 47:3573–3579CrossRefGoogle Scholar
  21. 21.
    Matejova L, Vales V, Fajgar R, Matej Z, Holy V, Solcova O (2013) Reverse micelles directed synthesis of TiO2-CeO2 mixed oxides and investigation of their crystal structure and morphology. J Solid State Chem 198:485–495CrossRefGoogle Scholar
  22. 22.
    Reli M, Ambrozova N, Sihor M, Matejova L, Capek L, Obalova L, Matej Z, Kotarba A, Koci K (2015) Novel cerium doped titania catalysts for photocatalytic decomposition of ammonia. Appl Catal B 178:108–116CrossRefGoogle Scholar
  23. 23.
    Matejova L, Cajthaml T, Matej Z, Benada O, Kluson P, Solcova O (2010) Super/subcritical fluid extractions for preparation of the crystalline titania. J Supercrit Fluids 52:215–221CrossRefGoogle Scholar
  24. 24.
    Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London, New YorkGoogle Scholar
  25. 25.
    Schneider P (1995) Adsorption-isotherms of microporous mesoporous solids revisited. Appl Catal A 129:157–165CrossRefGoogle Scholar
  26. 26.
    Deboer JH, Lippens BC, Linsen BG, Broekhof Jc, Vandenhe A, Osinga TJ (1966) T-curve of multimolecular N2-adsorption. J Colloid Interf Sci 21:405–414CrossRefGoogle Scholar
  27. 27.
    Lecloux A, Pirard JP (1979) Importance of standard isotherms in the analysis of adsorption-isotherms for determining the porous texture of solids. J Colloid Interf Sci 70:265–281CrossRefGoogle Scholar
  28. 28.
    Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances .1. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380CrossRefGoogle Scholar
  29. 29.
    NOVAwin (2013) Data Processing-Quantachrome Software, Quantachrome, USAGoogle Scholar
  30. 30.
    Scardi P, Leoni M (2002) Whole powder pattern modelling. Acta Crystallogr Sect A Found Crystallogr 58:190–200CrossRefGoogle Scholar
  31. 31.
    Matěj Z, Kužel R, Nichtová L (2010) XRD total pattern fitting applied to study of microstructure of TiO2 films. Powder Diffr 25:125–131CrossRefGoogle Scholar
  32. 32.
    Matěj Z, Kužel R (2009) MStruct-program/library for MicroStructure analysis by powder diffractionGoogle Scholar
  33. 33.
    Ballari MdlM, Brandi R, Alfano O, Cassano A (2008) Mass transfer limitations in photocatalytic reactors employing titanium dioxide suspensions: I. Concentration profiles in the bulk. Chem Eng J 136:50–65CrossRefGoogle Scholar
  34. 34.
    Kočí K, Obalová L, Plachá D, Lacný Z (2008) Effect of temperature, pressure and volume of reacting phase on photocatalytic CO2 reduction on suspended nanocrystalline TiO2. Collect Czech Chem C 73:1192–1204CrossRefGoogle Scholar
  35. 35.
    Koci K, Zatloukalova K, Obalova L, Krejcikova S, Lacny Z, Capek L, Hospodkova A, Solcova O (2011) Wavelength effect on photocatalytic reduction of CO2 by Ag/TiO2 catalyst. Chinese J Catal 32:812–815CrossRefGoogle Scholar
  36. 36.
    Meksi M, Kochkar H, Berhault G, Guillard C (2015) Effect of cerium content and post-thermal treatment on doped anisotropic TiO2 nanomaterials and kinetic study of the photodegradation of formic acid. J Mol Catal a-Chem 409:162–170CrossRefGoogle Scholar
  37. 37.
    Zhao B, Chen F, Jiao Y, Yang H, Zhang J (2011) Ag0-loaded brookite/anatase composite with enhanced photocatalytic performance towards the degradation of methyl orange. J Mol Catal A: Chem 348:114–119CrossRefGoogle Scholar
  38. 38.
    Kapteijn F, RodriguezMirasol J, Moulijn JA (1996) Heterogeneous catalytic decomposition of nitrous oxide. Appl Catal B 9:25–64CrossRefGoogle Scholar
  39. 39.
    Jakobi K (1994) Electronic and vibrational properties, Springer-Verlag Berlin Heidelberg. doi: 10.1007/b47750
  40. 40.
    Kočí K, Matějová L, Ambrožová N, Šihor M, Troppová I, Čapek L, Kotarba A, Kustrowski P, Hospodková A, Obalová L (2016) Optimization of cerium doping of TiO2 for photocatalytic reduction of CO2 and photocatalytic decomposition of N2O. J Sol-Gel Sci Technol 78:550–558CrossRefGoogle Scholar
  41. 41.
    Baran T, Wojtyła S, Dibenedetto A, Aresta M, Macyk W (2015) Zinc sulfide functionalized with ruthenium nanoparticles for photocatalytic reduction of CO2. Appl Catal B 178:170–176CrossRefGoogle Scholar
  42. 42.
    Kumar P, Mungse HP, Cordier S, Boukherroub R, Khatri OP, Jain SL (2015) Hexamolybdenum clusters supported on graphene oxide: Visible-light induced photocatalytic reduction of carbon dioxide into methanol. Carbon 94:91–100CrossRefGoogle Scholar
  43. 43.
    Tahir M, Amin NS (2013) Recycling of carbon dioxide to renewable fuels by photocatalysis: Prospects and challenges. Renew Sust Energ Rev 25:560–579CrossRefGoogle Scholar
  44. 44.
    Kočí K, Matějová L, Kozák O, Čapek L, Valeš V, Reli M, Praus P, Šafářová K, Kotarba A, Obalová L (2014) ZnS/MMT nanocomposites: The effect of ZnS loading in MMT on the photocatalytic reduction of carbon dioxide. Appl Catal B 158–159:410–417Google Scholar
  45. 45.
    Altomare M, Dozzi MV, Chiarello GL, Di Paola A, Palmisano L, Selli E (2015) High activity of brookite TiO2 nanoparticles in the photocatalytic abatement of ammonia in water. Catal Today 252:184–189CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Lenka Matějová
    • 1
    Email author
  • Marcel Šihor
    • 1
  • Jaroslav Lang
    • 1
  • Ivana Troppová
    • 1
  • Nela Ambrožová
    • 1
  • Martin Reli
    • 1
  • Tereza Brunátová
    • 2
  • Libor Čapek
    • 3
  • Andrzej Kotarba
    • 4
  • Kamila Kočí
    • 1
  1. 1.Institute of Environmental TechnologyVŠB-Technical University of OstravaOstrava-PorubaCzech Republic
  2. 2.Department of Condensed Matter Physics, Faculty of Mathematics and PhysicsCharles University in PraguePrague 2Czech Republic
  3. 3.Department of Physical Chemistry, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic
  4. 4.Faculty of ChemistryJagiellonian UniversityKrakowPoland

Personalised recommendations