Advertisement

Journal of Sol-Gel Science and Technology

, Volume 88, Issue 1, pp 13–21 | Cite as

Interaction of cellulose nanocrystals with titanium dioxide and peculiarities of hybrid structures formation

  • I. S. Martakov
  • M. A. Torlopov
  • V. I. Mikhaylov
  • E. F. Krivoshapkina
  • V. E. Silant’ev
  • P. V. Krivoshapkin
Original Paper: Sol-gel, hybrids and solution chemistries
  • 258 Downloads

Abstract

In this work we prepared hybrid particles based on cellulose nanocrystals and titanium dioxide nanoparticles and studied their aggregate stability for a wide range of the components ratios. Electrosurface properties of cellulose nanocrystals and TiO2 greatly influence on morphology and properties of the hybrid particles. Sufficient amount of TiO2 nanoparticles in the hybrid dispersions make it possible to completely cover cellulose nanocrystals surface and form a core-shell structure. Derjaguin–Landau–Verwey–Overbeek theory calculations confirmed experimental data and possibility of TiO2 monolayer covering of cellulose nanocrystals surface. Summarizing the findings, we conclude about the mechanism of interaction between cellulose nanocrystals and titanium dioxide—at the first stage particles are attracted to one another due to long-range electrostatic forces; at the second stage hydrogen bonds are formed. It is found that control of the surface potential allows to obtain stable colloidal hybrid dispersions (having negative-charged or positive-charged particles), or hybrid systems with a neutral surface charge.

Graphical Abstract

Open image in new window

Keywords

Hybrid particles Cellulose nanocrystals Titanium dioxide Electrostatic interaction DLVO theory Heterocoagulation 

Notes

Acknowledgements

This work was supported by the Russian Foundation for Basic Research, grant No 16-33-108; Krivoshapkin P. V. is grateful to a Program of the Ural Branch of the Russian Academy of Sciences No 15-9-3-60. Most of the studies were carried out using the equipment of the Collective Use Center Khimiya, Institute of Chemistry, Komi Scientific Center, Ural Branch, Russian Academy of Sciences.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Pomogailo AD, Dzhardimalieva GI (2014) Nanostructured materials preparation via condensation ways. Springer, Dodrecht—Heidelberg—New York—LondonCrossRefGoogle Scholar
  2. 2.
    Shchipunov YA, Karpenko TY (2004) Hybrid polysaccharide-silica nanocomposites prepared by the sol-gel technique. Langmuir 20:3882–3887CrossRefGoogle Scholar
  3. 3.
    Gubanova GN, Kononova SV, Cristea M, Timpu D, Romashkova KA, Korytkova EN, Saprikina NN, Maslennikova TP (2015) Morphology and mechanical properties of polymer-inorganic nanocomposite containing triple chain fibrous Na-Mg hydrosilicate. Russ J Gen Chem 85:1496–1505CrossRefGoogle Scholar
  4. 4.
    Kononova SV, Korytkova EN, Maslennikova TP, Romashkova KA, Kruchinina EV, Potokin IL, Gusarov VV (2010) Polymer-inorganic nanocomposites based on aromatic polyamidoimides effective in the processes of liquids separation. Russ J Gen Chem 80:1136–1142CrossRefGoogle Scholar
  5. 5.
    Wei H, Rodriguez K, Renneckar S, Vikesland PJ (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci: Nano 1:302–316Google Scholar
  6. 6.
    Han J, Zhou C, Wu Y, Liu F, Wu Q (2013) Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 14:1529–1540CrossRefGoogle Scholar
  7. 7.
    Shi Z, Phillips GO, Yang G (2013) Nanocellulose electroconductive composites. Nanoscale 5:3194–3201CrossRefGoogle Scholar
  8. 8.
    Mautner A, Lee KY, Tammelin T, Mathew AP, Nedoma AJ, Li K, Bismarck A (2015) Cellulose nanopapers as tight aqueous ultra-filtration membranes. React FunctPolym 86:209–214CrossRefGoogle Scholar
  9. 9.
    Sitnikov PA, Belykh AG, Fedoseev MS, Vaseneva IN, Kuchin AV (2008) Modification of epoxyanhydride polymers with aluminum oxide. Russ J Appl Chem 81:826–829CrossRefGoogle Scholar
  10. 10.
    De Salvi DT, Barud HS, Caiut JMA, Messaddeq Y, Ribeiro SJ (2012) Self-supported bacterial cellulose/boehmite organic–inorganic hybrid films. J Sol-Gel Sci Technol 63:211–218CrossRefGoogle Scholar
  11. 11.
    Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468:422–425CrossRefGoogle Scholar
  12. 12.
    Ivanova A, Fattakhova-Rohlfing D, Kayaalp BE, Rathouský J, Bein T (2014) Tailoring the morphology of mesoporous titania thin films through biotemplating with nanocrystalline cellulose. J Am Chem Soc 136:5930–5937CrossRefGoogle Scholar
  13. 13.
    Yoldas BE (1986) Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters. J Mater Sci 21:1087–1092CrossRefGoogle Scholar
  14. 14.
    Torlopov MA, Udoratina EV, Martakov IS, Sitnikov PA (2017) Cellulose nanocrystals prepared in H3PW12O40-acetic acid system. Cellulose 24:2153–2162CrossRefGoogle Scholar
  15. 15.
    Martakov IS, Krivoshapkin PV, Torlopov MA, Mikhailov VI, Krivoshapkina EF (2016) Study on the stability of hybrid dispersions of cellulose nanocrystals and aluminum oxide. Glass Phys Chem 42:590–596CrossRefGoogle Scholar
  16. 16.
    Hogg R, Healy TW, Furstenau DW (1966) Mutual coagulation of colloidal dispersions. Trans Faraday Soc 62:1638–1651CrossRefGoogle Scholar
  17. 17.
    Golikova EV, Burdina NM, Vysokovskaya NA (2002) Aggregation stability of SiO2, FeOOH, ZrO2, CeO2, and natural diamond sols and their binary mixtures: 2. The photometric study of heterocoagulation of SiO2–FeOOH, SiO2–ZrO2, SiO2–CeO2, and CeO2–natural diamond binary systems in KCl solutions. Colloid J 64:142–148CrossRefGoogle Scholar
  18. 18.
    Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle Deposition and Aggregation Measurement, Modelling and Simulation. Elsevier, Butterworth-Heinemann, WoburnGoogle Scholar
  19. 19.
    Lu S, Pugh RJ, Forssberg E (2005) Interfacial Separation of Particles. Elsevier, AmsterdamGoogle Scholar
  20. 20.
    Baturenko DYU, Chernoberezhskii YUM, Lorentsson AV, Zhukov AN (2003) Effect of pH on the aggregation stability of microcrystalline cellulose dispersions in aqueous 0.1 M NaCl solutions. Colloid J 65:666–671CrossRefGoogle Scholar
  21. 21.
    Mahmoud KA, Mena JA, Male KB, Hrapovic S, Kamen A, Luong JH (2010) Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS Appl Mater Interfaces 2:2924–2932CrossRefGoogle Scholar
  22. 22.
    Fu G, He A, Jin Y, Cheng Q, Song J (2012) Fabrication of hollow silica nanorods using nanocrystalline cellulose as templates. BioResources 7:2319–2329Google Scholar
  23. 23.
    Mashkour M, Kimura T, Kimura F, Mashkour M, Tajvidi M (2014) One-dimensional core–shell cellulose-akaganeite hybrid nanocrystals: synthesis, characterization, and magnetic field induced self-assembly. RSC Adv 4:52542–52549CrossRefGoogle Scholar
  24. 24.
    Cerbelaud M, Videcoq A, Abelard P, Pagnoux C, Rossignol F, Ferrando R (2008) Heteroaggregation between Al2O3 submicrometer particles and SiO2 nanoparticles: experiment and simulation. Langmuir 24:3001–3008CrossRefGoogle Scholar
  25. 25.
    Zhbankov RG (1992) Hydrogen bonds and structure of carbohydrates. J Mol Struct 270:523–539CrossRefGoogle Scholar
  26. 26.
    Levdik IY, Nikitin VN, Petropavlovskii GA, Vasil’eva GS (1965) IR study of analytical and structural characteristics of low-substituted methylcellulose films. J Appl Spectrosc 3:269–272CrossRefGoogle Scholar
  27. 27.
    Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive Cellulose Chemistry; Volume 1: Fundamentals and Analytical Methods. Wiley‐VCH Verlag GmbH, WeinheimGoogle Scholar
  28. 28.
    Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19:383–396CrossRefGoogle Scholar
  29. 29.
    Khoshkava V, Kamal MR (2014) Effect of drying conditions on cellulose nanocrystal (CNC) agglomerate porosity and dispersibility in polymer nanocomposites. Powder Technol 261:288–298CrossRefGoogle Scholar
  30. 30.
    De Salvi DT (2012) Self-supported bacterial cellulose/boehmite organic–inorganic hybrid films. J Sol-Gel Sci Technol 63:211–218CrossRefGoogle Scholar
  31. 31.
    He M, Duan B, Xu D, Zhang L (2015) Moisture and solvent responsive cellulose/SiO2 nanocomposite materials. Cellulose 22:553–563CrossRefGoogle Scholar
  32. 32.
    Khan R, Dhayal M (2008) Nanocrystalline bioactive TiO2-chitosan impedimetric immunosensor for ochratoxin-A. Electrochem Commun 10:492–495CrossRefGoogle Scholar
  33. 33.
    Zhou Z, Lu C, Wu X, Zhang X (2013) Cellulose nanocrystals as a novel support for CuO nanoparticles catalysts: facile synthesis and their application to 4-nitrophenol reduction. RSC Adv 3:26066–26073CrossRefGoogle Scholar
  34. 34.
    Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325CrossRefGoogle Scholar
  35. 35.
    Romanov DP, Baklagina YuG, Gubanova GN, Ugolkov VL, Lavrent’ev VK, Tkachenko AA, Sinyaev VA, Sukhanova TE, Khripunov AK (2010) Formation of organic-inorganic composite materials based on cellulose Acetobacter xylinum and calcium phosphates for medical applications. Glass Phys Chem 36:484–493CrossRefGoogle Scholar
  36. 36.
    Liu S, Tao D, Bai H, Liu X (2012) Cellulose-nanowhisker-templated synthesis of titanium dioxide/cellulose nanomaterials with promising photocatalytic abilities. J Appl Polym Sci 126:E282–E290CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Institute of Chemistry, Komi Science Centre, Ural DivisionRussian Academy of SciencesSyktyvkarRussian Federation
  2. 2.ITMO UniversitySt. PetersburgRussian Federation
  3. 3.Institute of Chemistry, Far Eastern DivisionRussian Academy of SciencesVladivostokRussian Federation

Personalised recommendations