Journal of Sol-Gel Science and Technology

, Volume 83, Issue 2, pp 296–307 | Cite as

Influence of structural isomerism of amino acid on the crystal growth of ZnO nanoparticles synthetized by polyol methods

  • C. Byl
  • A. Gloter
  • J. P. Baltaze
  • D. Bérardan
  • N. Dragoe
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


Zinc oxide nanoparticles were synthesized by using a polyol method and several isomers of aminobenzoic acid as surfactant. Our results show that nanoparticle morphology and size are closely linked with the structural isomerism of the surfactant: spherical nanoparticle for ortho-aminobenzoic acid, twin rod for meta-aminobenzoic acid, and oriented mesosphere of triangular nanoparticles were obtained. We have shown that the morphology is governed on the first step by the reaction of carboxylate function with zinc precursor and in a second step by amine group interactions with the particle surface. Moreover, in the case of para-aminobenzoic acid, the agglomeration of triangular nanoparticles originates from the mutual alignment of crystal faces due to interparticular force to form oriented mesospheres. This agglomeration can be avoided by the use of basic conditions for the synthesis of the nanoparticles.

Graphical Abstract

Open image in new window


ZnO Aminobenzoic acid Nanoparticles Polyol method Oriented attachment HTREM 



The authors acknowledge support from the Agence Nationnale de Recherche through the project Nanoxydesign. The authors want to thanks P. Ribot for SEM observations.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10971_2017_4403_MOESM1_ESM.docx (437 kb)
Supplementary Information


  1. 1.
    Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9(6):1302–1317. doi: 10.1021/cm960441a CrossRefGoogle Scholar
  2. 2.
    Jeon I-Y, Baek J-B (2010) Nanocomposites derived from polymers and inorganic nanoparticles. Materials 3(6). doi: 10.3390/ma3063654
  3. 3.
    Naskar AK, Keum JK, Boeman RG (2016) Polymer matrix nanocomposites for automotive structural components. Nat Nano 11(12):1026–1030. doi: 10.1038/nnano.2016.262 CrossRefGoogle Scholar
  4. 4.
    Zhang QM, Luo J, Tang Q, Han DF, Zhou Y, Du J (2012) Nanocomposite dielectrics in PbO-BaO-Na2O-Nb2O5-SiO2 system with high breakdown strength for high voltage capacitor applications. J Nanosci Nanotechnol 12(11):8832–8835. doi: 10.1166/jnn.2012.6825 CrossRefGoogle Scholar
  5. 5.
    Raetzke S, Kindersberger J (2010) Role of interphase on the resistance to high-voltage arcing, on tracking and erosion of silicone/SiO2 nanocomposites. IEEE Trans Dielectr Electr Insul 17(2):607–614. doi: 10.1109/tdei.2010.5448118 CrossRefGoogle Scholar
  6. 6.
    Musa FN, Bashir N, Ahmad MH, Buntat Z (2015) Electrical treeing in high voltage insulations: a review on nanocomposite insulating materials and their processing techniques. J Optoelectron Adv Mat 17(3-4):462–476Google Scholar
  7. 7.
    Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204. doi: 10.1016/j.polymer.2008.04.017 CrossRefGoogle Scholar
  8. 8.
    Chen W, Liu X, Liu Y, Kim H-I (2010) Synthesis of microcapsules with polystyrene/ZnO hybrid shell by pickering emulsion polymerization. Colloid Polym Sci 288(14):1393–1399. doi: 10.1007/s00396-010-2277-8 CrossRefGoogle Scholar
  9. 9.
    Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3(6). doi: 10.3390/ma3063468
  10. 10.
    Morkoç, H, Özgür, Ü (2009) Optical Properties, in Zinc Oxide: Fundamentals, Materials and Device Technology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi:10.1002/9783527623945.ch3Google Scholar
  11. 11.
    Ellmer K (2000) Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties. J Phy D Appl Phys 33(4):R17–R32. doi: 10.1088/0022-3727/33/4/201 CrossRefGoogle Scholar
  12. 12.
    Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16(25):R829–R858. doi: 10.1088/0953-8984/16/25/r01 CrossRefGoogle Scholar
  13. 13.
    Chakrabarti S, Dutta BK (2004) Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J Hazard Mater 112(3):269–278. doi: 10.1016/j.jhazmat.2004.05.013 CrossRefGoogle Scholar
  14. 14.
    Janotti A, Van de Walle CG (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72(12):29. doi: 10.1088/0034-4885/72/12/126501 CrossRefGoogle Scholar
  15. 15.
    Ameen S, Akhtar MS, Kim YS, Yang OB, Shin HS (2011) An effective nanocomposite of polyaniline and ZnO: preparation, characterizations, and its photocatalytic activity. Colloid Polym Sci 289(4):415–421. doi: 10.1007/s00396-010-2350-3 CrossRefGoogle Scholar
  16. 16.
    Zhu SB, Wei W, Chen XN, Jiang M, Zhou ZW (2012) Hybrid structure of polyaniline/ZnO nanograss and its application in dye-sensitized solar cell with performance improvement. J Solid State Chem 190:174–179. doi: 10.1016/j.jssc.2012.02.028 CrossRefGoogle Scholar
  17. 17.
    Wang H, Yi G, Zu X, Qin P, Tan M, Luo H (2016) Photoelectric characteristics of the p-n junction between ZnO nanorods and polyaniline nanowires and their application as a UV photodetector. Mater Lett 162:83–86. doi: 10.1016/j.matlet.2015.09.128 CrossRefGoogle Scholar
  18. 18.
    Ghushe JM, Giripunje SM, Kondawar SB (2016) Effect of metal doped zinc oxide nanorods on photoelectrical characteristics of ZnO/polyaniline heterojunction. J Inorg Organomet Polym Mater 26(2):370–375. doi: 10.1007/s10904-016-0333-7 CrossRefGoogle Scholar
  19. 19.
    Tang Q, Lin L, Mao Z, Wu J (2012) p-n Heterojunction on dye-sensitized ZnO nanorod arrays and macroporous polyaniline network. RSC Adv 2(5):1863–1869. doi: 10.1039/c1ra00840d CrossRefGoogle Scholar
  20. 20.
    Alias SS, Ismail AB, Mohamad AA (2010) Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. J Alloys Compd 499(2):231–237. doi: 10.1016/j.jallcom.2010.03.174 CrossRefGoogle Scholar
  21. 21.
    Aneesh PM, Vanaja KA, Jayaraj MK (2007) Synthesis of ZnO nanoparticles by hydrothermal method—art. no. 66390J. Conference on Nanophotonic Materials IV, San Diego, CA, 26–27 Aug. Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie). pp J6390–J6390. doi: 10.1117/12.730364
  22. 22.
    Anžlovar A, Kogej K, Orel ZC, Žigon M (2014) Impact of inorganic hydroxides on ZnO nanoparticle formation and morphology. Cryst Growth Des 14(9):4262–4269. doi: 10.1021/cg401870e CrossRefGoogle Scholar
  23. 23.
    Bouropoulos N, Tsiaoussis I, Poulopoulos P, Roditis P, Baskoutas S (2008) ZnO controllable sized quantum dots produced by polyol method: an experimental and theoretical study. Materials Lett 62(20):3533–3535. doi: 10.1016/j.matlet.2008.03.044 CrossRefGoogle Scholar
  24. 24.
    Shen LM, Guo LC, Bao NZ, Yanagisawa K (2003) Salt-assisted solid-state chemical reaction: synthesis of ZnO nanocrystals. Chem Lett 32(9):826–827CrossRefGoogle Scholar
  25. 25.
    Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide—from synthesis to application: a review. Materials 7 (4). doi: 10.3390/ma7042833
  26. 26.
    Brayner R, Dahoumane SA, Yéprémian C, Djediat C, Meyer Ml, Couté A, Fiévet F (2010) ZnO nanoparticles: synthesis, characterization, and ecotoxicological studies. Langmuir 26(9):6522–6528. doi: 10.1021/la100293s CrossRefGoogle Scholar
  27. 27.
    Anzlovar A, Orel ZC, Kogej K, Zigon M (2012) Polyol-mediated synthesis of zinc oxide nanorods and nanocomposites with poly(methyl methacrylate). J Nanomat 9: doi: 10.1155/2012/760872
  28. 28.
    Li CG, Zhao Y, Wang L, Li GH, Shi Z, Feng SH (2010) Polyol-mediated synthesis of highly water-soluble ZnO colloidal nanocrystal clusters. Eur J Inorg Chem 2:217–220. doi: 10.1002/ejic.200900833 CrossRefGoogle Scholar
  29. 29.
    Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B Condens Matter 192(1–2):55–69. doi:10.1016/0921-4526(93)90108-ICrossRefGoogle Scholar
  30. 30.
    Popa NC, Balzar D (2008) Size-broadening anisotropy in whole powder pattern fitting. Application to zinc oxide and interpretation of the apparent crystallites in terms of physical models. J Appl Crystallogr 41(3):615–627. doi: 10.1107/S0021889808012223 CrossRefGoogle Scholar
  31. 31.
    Jézéquel D, Guenot J, Jouini N, Fiévet F (1995) Submicrometer zinc oxide particles: elaboration in polyol medium and morphological characteristics. J Mater Res 10(01):77–83CrossRefGoogle Scholar
  32. 32.
    Cao X, Thet MN, Zhang Y, Loo SCJ, Magdassi S, Yan QY, Long Y (2015) Solution-based fabrication of VO2 (M) nanoparticles via lyophilisation. RSC Adv 5(33):25669–25675. doi: 10.1039/c4ra16840b CrossRefGoogle Scholar
  33. 33.
    Terada H (1972) Partition behavior of p-aminobenzoic acid and sulfonamides at various pH values. Chem Pharm Bull 20(4):765–771. doi: 10.1248/cpb.20.765 CrossRefGoogle Scholar
  34. 34.
    Zikolov P, Budevsky O (1973) Acid-base equilibria in ethylene glycol—I definition of pH and determination of pk-values of acid-base indicators. Talanta 20(5):487–493. doi:10.1016/0039-9140(73)80186-9CrossRefGoogle Scholar
  35. 35.
    Tekin-Celebi S, Solak AO, Ustundag Z, Demirci S (2012) Determination of pK a of benzoic acid- and p-aminobenzoic acid-modified platinum surfaces by electrochemical and contact angle measurements. Chem Pap 66(12):1146–1156. doi: 10.2478/s11696-012-0237-0 CrossRefGoogle Scholar
  36. 36.
    Ye B-H, Li X-Y, Williams ID, Chen X-M (2002) Synthesis and structural characterization of di- and tetranuclear zinc complexes with phenolate and carboxylate bridges. Correlations between 13C NMR chemical shifts and carboxylate binding modes. Inorg Chem 41(24):6426–6431. doi: 10.1021/ic025806+ CrossRefGoogle Scholar
  37. 37.
    Harris RK, Jackson P (1987) High-resolution 1H and 13C NMR of solid 2-aminobenzoic acid. J Phys Chem Solids 48(9):813–818. doi:10.1016/0022-3697(87)90031-XCrossRefGoogle Scholar
  38. 38.
    Samsonowicz M, Hrynaszkiewicz T, Świsłocka R, Regulska E, Lewandowski W (2005) Experimental and theoretical IR, Raman, NMR spectra of 2-, 3- and 4-aminobenzoic acids. J Mol Struct 744–747(0):345–352. doi: 10.1016/j.molstruc.2004.11.063 CrossRefGoogle Scholar
  39. 39.
    Noei H, Qiu H, Wang Y, Loffler E, Woll C, Muhler M (2008) The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Phys Chem Chem Phys 10(47):7092–7097. doi: 10.1039/B811029H CrossRefGoogle Scholar
  40. 40.
    Tsyganenko AA, Pozdnyakov DV, Filimonov VN (1975) Infrared study of surface species arising from ammonia adsorption on oxide surfaces. J Mol Struct 29(2):299–318. doi:10.1016/0022-2860(75)85038-1CrossRefGoogle Scholar
  41. 41.
    Ramasamy SM, Hurtubise RJ (1990) Physicochemical interactions of the isomers of aminobenzoic acid with sodium acetate in solid-matrix room-temperature luminescence spectroscopy. Appl Spectrosc 44(9):1494–1497. doi: 10.1366/0003702904417706 CrossRefGoogle Scholar
  42. 42.
    Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) Chapter 10—compounds containing –NH2, –NHR, and –NR2 groups. The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic Press, San Diego, CA, p 155–178CrossRefGoogle Scholar
  43. 43.
    Andreeva OA, Burkova LA, Podeshvo IV (2015) Fourier transform IR spectroscopic study of substituent effect in aromatic amino acids on the zwitterion–neutral molecule tautomeric equilibrium. Russ J Phys Chem B 9(6):869–875. doi: 10.1134/S1990793115060147 CrossRefGoogle Scholar
  44. 44.
    Zeleňák V, Vargová Z, Györyová K (2007) Correlation of infrared spectra of zinc(II) carboxylates with their structures. Spectrochim Acta Mol Biomol Spectrosc 66(2):262–272. doi: 10.1016/j.saa.2006.02.050 CrossRefGoogle Scholar
  45. 45.
    Mohd Omar F, Abdul Aziz H, Stoll S (2014) Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid. Sci Total Environ 468–469:195–201. doi: 10.1016/j.scitotenv.2013.08.044 CrossRefGoogle Scholar
  46. 46.
    Bian S-W, Mudunkotuwa IA, Rupasinghe T, Grassian VH (2011) Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27(10):6059–6068. doi: 10.1021/la200570n CrossRefGoogle Scholar
  47. 47.
    Sturm EV, Colfen H (2016) Mesocrystals: structural and morphogenetic aspects. Chem Soc Rev 45(21):5821–5833. doi: 10.1039/C6CS00208K CrossRefGoogle Scholar
  48. 48.
    Demianets LN, Kostomarov DV (2001) Mechanism of zinc oxide single crystal growth under hydrothermal conditions. Ann Chim Sci Mat 26(1):193–198CrossRefGoogle Scholar
  49. 49.
    Sola-Rabada A, Liang MK, Roe MJ, Perry CC (2015) Peptide-directed crystal growth modification in the formation of ZnO. J Mater Chem B 3(18):3777–3788. doi: 10.1039/c5tb00253b CrossRefGoogle Scholar
  50. 50.
    Limo MJ, Ramasamy R, Perry CC (2015) ZnO binding peptides: smart versatile tools for controlled modification of ZnO growth mechanism and morphology. Chem Mater 27(6):1950–1960. doi: 10.1021/acs.chemmater.5b00419 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.ICMMO (UMR 8182 CNRS)Univ Paris-Sud, Univ Paris SaclayOrsayFrance
  2. 2.LPSUniv Paris-Sud, Univ Paris SaclayOrsayFrance

Personalised recommendations