Heteroaggregation of cellulose nanocrystals with Fe2O3 nanoparticles

  • Vasily Igorevich Mikhaylov
  • Mikhail Anatolievich Torlopov
  • Elena Fedorovna Krivoshapkina
  • Ilia Sergeevich Martakov
  • Pavel Vasilievich Krivoshapkin
Original Paper: Sol-gel, hybrids and solution chemistries
  • 230 Downloads

Abstract

Hybrid dispersion systems based on cellulose nanocrystals (CNC) and ferric oxide nanoparticles have been prepared, and heteroaggregation process for a wide range of the concentration ratio of the components have been studied. It is established that one can obtain stable colloidal dispersions with both negatively and positively charged particles or hybrid systems with a neutralized surface charge by controlling the CNC/Fe2O3 concentration ratio. It is shown that the heteroaggregation of cellulose nanocrystals-Fe2O3 hybrid dispersions occurs by the “charge neutralization–charge reversal” mechanism. The hybrid systems are stable outside the range of the ζ-potential values between −30 and +30 mV.

Graphical Abstract

Open image in new window

Keywords

Hybrid particles Cellulose nanocrystals Iron oxide CNC Sol–gel Heteroaggregation 

Notes

Acknowledgements

This research was supported by a grant from the Russian Science Foundation (project №. 16-13-10148).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Piechowiak MA, Videcoq A, Rossignol F et al. (2010) Oppositely charged model ceramic colloids: numerical predictions and experimental observations by confocal laser scanning microscopy. Langmuir 26:12540–12547. doi:10.1021/la101027d CrossRefGoogle Scholar
  2. 2.
    Yi P, Pignatello JJ, Uchimiya M, White JC (2015) Heteroaggregation of cerium oxide nanoparticles and nanoparticles of pyrolyzed biomass. Environ Sci Technol 49:13294–13303. doi:10.1021/acs.est.5b03541 CrossRefGoogle Scholar
  3. 3.
    Yates PD, Franks GV, Biggs S, Jameson GJ (2005) Heteroaggregation with nanoparticles: effect of particle size ratio on optimum particle dose. Colloids Surfaces A Physicochem Eng Asp 255:85–90. doi:10.1016/j.colsurfa.2004.12.035 CrossRefGoogle Scholar
  4. 4.
    Cerbelaud M, Videcoq A, Abélard P, Ferrando R (2009) Simulation of the heteroagglomeration between highly size-asymmetric ceramic particles. J Colloid Interface Sci 332:360–5. doi:10.1016/j.jcis.2008.11.063 CrossRefGoogle Scholar
  5. 5.
    Cerbelaud M, Videcoq A, Abélard P et al. (2008) Heteroaggregation between Al2O3 submicrometer particles and SiO2 nanoparticles: experiment and simulation. Langmuir 24:3001–3008. doi:10.1021/la702104u CrossRefGoogle Scholar
  6. 6.
    Praetorius A, Labille J, Scheringer M et al. (2014) Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions. Environ Sci Technol 48:10690–10698. doi:10.1021/es501655v CrossRefGoogle Scholar
  7. 7.
    Zhou Z, Lu C, Wu X et al. (2013) Cellulose nanocrystals as a novel support for CuO nanoparticles catalysts: facile synthesis and their application to 4-nitrophenol reduction. RSC Adv 3:26066. doi:10.1039/c3ra43006e CrossRefGoogle Scholar
  8. 8.
    Lin N, Dufresne A (2014) Nanocellulose in biomedicine: Current status and future prospect. Eur Polym J 59:302–325. doi:10.1016/j.eurpolymj.2014.07.025 CrossRefGoogle Scholar
  9. 9.
    Mikhailov VI, Krivoshapkina EF, Demin VA et al. (2016) The influence of nanodisperse iron(III) oxide on the morphology of microsized alumina fibers. Russ J Gen Chem 86:213–218. doi:10.1134/S107036321602002X CrossRefGoogle Scholar
  10. 10.
    Mikhailov VI, Krivoshapkina EF, Ryabkov YI, Krivoshapkin PV (2016) Influence of the electrokinetic properties of cellulose on the morphology of iron(III) oxide upon template synthesis. Glas. Phys Chem 42:582–589. doi:10.1134/S1087659616060158 Google Scholar
  11. 11.
    Salas C, Nypelö T, Rodriguez-Abreu C et al. (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19:383–396. doi:10.1016/j.cocis.2014.10.003 CrossRefGoogle Scholar
  12. 12.
    Kim J-H, Shim BS, Kim HS et al. (2015) Review of nanocellulose for sustainable future materials. Int J Precis Eng Manuf Technol 2:197–213. doi:10.1007/s40684-015-0024-9 CrossRefGoogle Scholar
  13. 13.
    Wei H, Rodriguez K, Renneckar S et al. (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci Nano 1:302–316. doi:10.1039/C4EN00059E CrossRefGoogle Scholar
  14. 14.
    Han J, Zhou C, Wu Y et al. (2013) Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromol 14:1529–1540. doi:10.1021/bm4001734 CrossRefGoogle Scholar
  15. 15.
    Shi Z, Phillips GO, Yang G et al. (2013) Nanocellulose electroconductive composites. Nanoscale 5:3194. doi:10.1039/c3nr00408b CrossRefGoogle Scholar
  16. 16.
    Krivoshapkin PV, Mikhaylov VI, Krivoshapkina EF et al. (2015) Mesoporous Fe–alumina films prepared via sol–gel route. Microporous Mesoporous Mater 204:276–281. doi:10.1016/j.micromeso.2014.12.001 CrossRefGoogle Scholar
  17. 17.
    Martakov IS, Krivoshapkin PV, Torlopov MA et al. (2016) Study on the stability of hybrid dispersions of cellulose nanocrystals and aluminum oxide. Glas Phys Chem 42:590–596. doi:10.1134/S1087659616060122 CrossRefGoogle Scholar
  18. 18.
    Khamova TV, Shilova OA, Golikova EV (2006) Investigation of the structuring in the Sol-Gel systems based on tetraethoxysilane. Glas Phys Chem 32:448–459. doi:10.1134/S1087659606040092 CrossRefGoogle Scholar
  19. 19.
    Ohshima H, Healy TW, White LR (1982) Improvement on the Hogg—Healy—Fuerstenau formulas for the interaction of dissimilar double layers. J Colloid Interface Sci 89:484–493. doi:10.1016/0021-9797(82)90199-0 CrossRefGoogle Scholar
  20. 20.
    Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle deposition and aggregation: measurement, modelling and simulation. Butterworth-Heinemann, Woburn, MA, p 443. Oxford, EnglandGoogle Scholar
  21. 21.
    Lu S, Pugh RJ, Forssberg KSE (2005) Interfacial separation of particles. Amsterdam; London: Elsevier. xii, 694.22Google Scholar
  22. 22.
    Israelachvili JN (2011) Intermolecular and surface forces. Burlington, MA: Academic PressGoogle Scholar
  23. 23.
    Bergström L, Stemme S, Dahlfors T et al. (1999) Spectroscopic ellipsometry characterisation and estimation of the hamaker constant of cellulose. Cellulose 6:1–13. doi:10.1023/A:1009250111253 CrossRefGoogle Scholar
  24. 24.
    Pita IA, Singh S, Silien C et al. (2016) Heteroaggregation assisted wet synthesis of core–shell silver–silica–cadmium selenide nanowires. Nanoscale 8:1200–1209. doi:10.1039/C5NR06615H CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of chemistry of Komi SC UB RASSyktyvkarRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations