Journal of Sol-Gel Science and Technology

, Volume 82, Issue 2, pp 352–362 | Cite as

Synthesis and characterization of La0.595V0.005Sr0.4CoO3−δ as a novel cathode material for solid oxide fuel cells (SOFC)

Original Paper: Devices based on sol-gel or hybrid materials
  • 189 Downloads

Abstract

The effect of vanadium doping on the crystal structure and on the electrical, electrochemical properties of La0.6−xVxSr0.4CoO3−δ (x = 0.005–0.05) perovskite oxides performing as cathode materials in solid oxide fuel cells is investigated in this study. Crystal structure, surface morphology, and porosity of prepared cathode materials are characterized by X-ray diffraction, X-ray absorption fine structure, and scanning electron microscopy. For the first time, it has been proven by X-ray absorption fine structure that La3+ cation is replaced with V4+/5+ cation in perovskite structure. Since V4+/5+ cation has the radius almost half of the radius of La3+ cation, this replacement adds better properties to the perovskite structure such as ionic conductivity and catalytic activity for oxygen reduction reaction. The electrical conductivity at the intermediate temperatures (400–700 °C) appears to be enough to yield a better performance in intermediate temperature-solid oxide fuel cells applications. The sample with 0.05% V4+/5+ doping exhibits its maximum electronic conductivity (σ = 843 S.cm−1 at 400 °C) and minimum activation energy (Ea = 0.049 eV). The La0.595V0.005Sr0.4CoO3 material as electrode for symmetric cell configuration was prepared on both surfaces of yttria-stabilized zirconia substrates. Oxygen concentration related polarization experiment suggests that the oxygen adsorption–desorption process or reactions controlled by the atomic oxygen diffusion process followed by a charge transfer are the cathode reaction rate-limiting steps.

Graphical Abstract

V4+/5+ ion doped LVxSC (La0.6-xVxSr0.4CoO3−δ x = 0.005-0.05) cathode materials for intermediate temperature-solid oxide fuel cells (IT-SOFC) are synthesized for the first time by sol-gel method. LV05SC cathode with good electro-catalytic activity for ORR can be considered as a potential cathode material for IT-SOFC applications.Open image in new window

Keywords

IT-SOFC EIS Oxygen reduction reaction (ORR) Perovskite 

Supplementary material

10971_2017_4334_MOESM1_ESM.docx (198 kb)
Supplementary Information

References

  1. 1.
    Ormerod RM (2003) Solid oxide fuel cells. Chem Soc Rev 32:17–28CrossRefGoogle Scholar
  2. 2.
    Singhal SC, Kendall K (2003) High temperature solid oxide fuel cells: fundamentals. In: Singhal SC, Kendall K (eds) Design and applications. Elsevier, Oxford, pp 1–23Google Scholar
  3. 3.
    Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sust En Rev 6:433–455CrossRefGoogle Scholar
  4. 4.
    Lashtabeg A, Skinner SJ (2006) Solid oxide fuel cells-a challenge for materials chemists? J Mater Chem 16:3161–3170CrossRefGoogle Scholar
  5. 5.
    Wachsman ED, Lee KT (2011) Lowering the temperature of solid oxide fuel cells. Science 334:935–939CrossRefGoogle Scholar
  6. 6.
    Brett DJL, Atkinson A, Brandon NP et al. (2008) Intermediate temperature solid oxide fuel cells. Chem Soc Rev 37:1568–1578CrossRefGoogle Scholar
  7. 7.
    Jacobson AJ (2010) Materials for solid oxide fuel cells. Chem Mater 22:660–674CrossRefGoogle Scholar
  8. 8.
    Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, Amsterdam, pp 117–146CrossRefGoogle Scholar
  9. 9.
    Istomin SY, Antipov EV (2013) Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells. Rus Chem Rev 82:686–700CrossRefGoogle Scholar
  10. 10.
    Jiang SP (2008) Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J Mater Sci 43:6799–6833CrossRefGoogle Scholar
  11. 11.
    Tiffee EI, Weber A, Herbstritt D (2001) Materials and technologies for SOFC components. J Eur Cer Soc 21:1805–1811CrossRefGoogle Scholar
  12. 12.
    Wei F, Cao H, Chen X (2016) La0.6Sr0.4CoO3−δ–Ce0.8Gd0.2O2−δ nanocomposites prepared by a sol–gel process for intermediate temperature solid oxide fuel cell cathode applications. J Mater Sci 51:2160–2167CrossRefGoogle Scholar
  13. 13.
    Mobius HH (1997) On the history of solid electrolyte fuel cells. J Solid State Electrochem 1:2–16CrossRefGoogle Scholar
  14. 14.
    Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104:4791–4843CrossRefGoogle Scholar
  15. 15.
    Richter J, Holtappels P, Graule T et al. (2009) Materials design for perovskite SOFC cathodes. Monatshefte für Chemie 140:985–999CrossRefGoogle Scholar
  16. 16.
    Tsipis EV, Kharton VV (2008) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. J Solid State Electrochem 12:1367–1391CrossRefGoogle Scholar
  17. 17.
    Adler SB, Lane JA, Steele BCH (1996) Electrode kinetics of porous mixed-conducting oxygen electrode. J Electrochem Soc 143:3554–3564CrossRefGoogle Scholar
  18. 18.
    Ohno Y, Nagata S, Sato H (1981) Effect of electrode materials on the properties of high-temperature solid electrolyte fuel cells. Solid State Ion 3-4:439–442CrossRefGoogle Scholar
  19. 19.
    Atkinson A, Ramos T (2000) Chemically-induced stresses in ceramic oxygen ion-conducting membranes. Solid State Ion 129:259–269CrossRefGoogle Scholar
  20. 20.
    Takeda Y, Kanno R, Noda M et al. (1986) Perovskite electrodes for high temperature solid electrolyte fuel cells. Bull Inst Chem Res 64:157–169Google Scholar
  21. 21.
    Sun CW, Hui R, Roller J (2010) Cathode materials for solid oxide fuel cells: a review. J Solid State Electrochem 14:1125–1144CrossRefGoogle Scholar
  22. 22.
    Zhang-Steenwinkel Y, Yu Q, Frans PF et al. (2016) High performance solid-oxide fuel cell: opening windows to low temperature application. Int J Hydrogen En 41:5824–5832CrossRefGoogle Scholar
  23. 23.
    Egger A, Bucher E, Yang M (2012) Comparison of oxygen exchange kinetics of the IT-SOFC cathode materials La0.5Sr0.5CoO3 − δ and La0.6Sr0.4CoO3 – δ. Solid State Ion 225:55–60CrossRefGoogle Scholar
  24. 24.
    Ralph JM, Schoeler AC, Krumpelt M (2001) Materials for lower temperature solid oxide fuel cells. J Mater Sci 36:1161–1172CrossRefGoogle Scholar
  25. 25.
    Gwon O, Yoo S, Shin J et al. (2014) Optimization of La1−xSrxCoO3-δ perovskite cathodes for intermediate temperature solid oxide fuel cells through the analysis of crystal structure and electrical properties. Int J Hydrogen En 39:20806–20811CrossRefGoogle Scholar
  26. 26.
    Fleig J, Januschewsky J, Ahrens M et al. (2009) Optimized La0.6Sr0.4CoO3-δ thin-film electrodes with extremely fast oxygen-reduction kinetics. Adv Funct Mater 19:3151–3156CrossRefGoogle Scholar
  27. 27.
    Petrov AN, Kononchuk OF, Andreev AV et al. (1995) Crystal structure, electrical and magnetic properties of La1-xSrxCoO3-y. Solid State Ion 80:189–199CrossRefGoogle Scholar
  28. 28.
    Chiba R, Yoshimura F, Sakurai Y (1999) An investigation of LaNi1-xFexO3 as a cathode material for solid oxide fuel cells. Solid State Ion 124:281–288CrossRefGoogle Scholar
  29. 29.
    Kivi I, Anderson E, Moeller P (2012) Influence of microstructural parameters of LSC cathodes on the oxygen reduction reaction parameters. J Electrochem Soc 159:F743–F750CrossRefGoogle Scholar
  30. 30.
    Pecho O, Holzer L, Yang Z, Martynczuk J, Hocker T, Flatt RJ, Prestat M (2015) J Power Sources 274:295–303CrossRefGoogle Scholar
  31. 31.
    Voronkova VI, Kharitonova EP, Krasil’nikova AE (2010) Specific features of phase transitions and the conduction of La2Mo2O9 oxide-ion conducting compound doped with vanadium. Crystallogr Rep 55/2:276–282CrossRefGoogle Scholar
  32. 32.
    Cao XG, Jiang SP (2013) Identification of oxygen reduction processes at (La, Sr)MnO3 electrode/La9.5Si6O26.25 apatite electrolyte interface of solid oxide fuel cells. Int J Hydrogen En 38:2421–2431CrossRefGoogle Scholar
  33. 33.
    Gunasekaran N, Bakshi N, Alcock CB et al. (1996) Surface characterization and catalytic properties of perovskite type solid oxide solutions, La0.8Sr0.2BO3 (B = Cr, Mn, Fe, Co or Y). Solid State Ion 83:145–150CrossRefGoogle Scholar
  34. 34.
    Wang P, Yao L, Wang M et al. (2000) XPS and voltammetric studies on La1-xSrxCoO3-δ perovskite oxide electrodes. J Alloys Comp 311:53–56CrossRefGoogle Scholar
  35. 35.
    Nefzi H, Sediri F (2013) Vanadium oxide nanotubes VOx-NTs: Hydrothermal synthesis, characterization, electrical study and dielectric properties. J Solid State Chem 201:237–243CrossRefGoogle Scholar
  36. 36.
    H. Falcon H, Barbero JA, Alonso JA et al. (2002) SrFeO3-δ perovskite oxides: chemical features and performance for methane combustion. Chem Mater 14:2325–2333CrossRefGoogle Scholar
  37. 37.
    Shichi Y, Munakata IF, Yamanaka M (1990) X-ray photoelectron spectroscopy analysis of Bi2Sr2Ca1-xYxCu2Oy. Phys Rev B 42:939–942CrossRefGoogle Scholar
  38. 38.
    Wu QH, Liu M, Jaegermann W (2005) X-ray photoelectron spectroscopy of La0.5Sr0.5MnO3. Mater Let 59:1980–1983CrossRefGoogle Scholar
  39. 39.
    Van der Heide PAW (2002) Systematic x-ray photoelectron spectroscopic study of La1−xSrx-based perovskite-type oxides. Surf Interface Analy 33:414–425CrossRefGoogle Scholar
  40. 40.
    Konishi H, Hirano T, Takamatsu D et al. (2015) Effect of composition of transition metals on stability of charged Li-rich layer structured cathodes, Li1.2Ni0.2-xMn0.6-xCo2xO2 (x=0, 0.033, and 0.067), at high temperatures. Elect Acta 186:591–597CrossRefGoogle Scholar
  41. 41.
    Nonaka T, Okuda C, Seno Y (2006) In situ XAFS and micro-XAFS studies on LiNi0.8Co0.15Al0.05O2 cathode material for lithium-ion batteries. J Power Sour 162:1329–1335CrossRefGoogle Scholar
  42. 42.
    Garche J, Chris D, Moseley P et al. (2009) Measurement methods structural plus electronic and chemical properties: X-ray absorption spectroscopy. In: Garche J, Chris D, Moseley P, Ogumi Z, Rand DAJ, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 3. Elsevier, Amsterdam, pp 790–801Google Scholar
  43. 43.
    Wandekar RV, Wani BN, Bharadwaj SR (2009) Solid State Ionics 11:240–250Google Scholar
  44. 44.
    Huang X, Peia L, Liua Z (2002) A study on PrMnO3-based perovskite oxides used in SOFC cathodes. J Alloys Comp 354:265–270CrossRefGoogle Scholar
  45. 45.
    Leone P, Santarelli M, Asinari P (2008) Experimental investigations of the microscopic features and polarization limiting factors of planar SOFCs with LSM and LSCF cathodes. J Power Sour 177:111–122CrossRefGoogle Scholar
  46. 46.
    Sitte W, Bucher E, Preis W (2002) Nonstoichiometry and transport properties of strontium-substituted lanthanum cobaltites. Solid State Ion 154:517–522CrossRefGoogle Scholar
  47. 47.
    Montero X, Fischer W, Tietz F (2009) Development and characterization of a quasi-ternary diagram based on La0.8Sr0.2(Co, Cu, Fe)O3 oxides in view of application as a cathode contact material for solid oxide fuel cells. Solid State Ion 180:731–737CrossRefGoogle Scholar
  48. 48.
    Bhoga SS, Khandale AP, Pahune BS (2014) Investigation on Pr2−xSrxNiO4+δ (x = 0.3–1.0) cathode materials for intermediate temperature solid oxide fuel cell. Solid State Ion 262:340–344CrossRefGoogle Scholar
  49. 49.
    Khandale AP, Bansod MG, Bhoga SS (2015) Improved electrical and electrochemical performance of co-doped Nd1.8Sr0.2Ni1 − xCuxO4 + δ. Solid State Ion 276:127–135CrossRefGoogle Scholar
  50. 50.
    Khandale AP, Bhoga SS (2014) Nd1.8Ce0.2CuO4+δ: Ce0.9Gd0.1O2−δ as a composite cathode for intermediate-temperature solid oxide fuel cells. J Power Sour 268:794–803CrossRefGoogle Scholar
  51. 51.
    Escudero MJ, Aguadero A, Alonso JA et al. (2007) A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy. J Electroanal Chem 611:107–116CrossRefGoogle Scholar
  52. 52.
    Chaudhari VN, Khandale AP, Bhoga SS (2014) Sr-doped Sm2CuO4 cathode for intermediate temperature solid oxide fuel cells. Solid State Ion 268:140–149CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of ChemistryBogazici UniversityIstanbulTurkey

Personalised recommendations