Journal of Sol-Gel Science and Technology

, Volume 82, Issue 2, pp 611–619 | Cite as

Sol–gel synthesis and characterization of two-component systems based on MgO

  • Aleksey A. Vedyagin
  • Ilya V. Mishakov
  • Timofey M. Karnaukhov
  • Elena F. Krivoshapkina
  • Ekaterina V. Ilyina
  • Tatyana A. Maksimova
  • Svetlana V. Cherepanova
  • Pavel V. Krivoshapkin
Original Paper: Sol-gel, hybrids and solution chemistries

Abstract

A series of two-component MOx–MgO systems, where M is Cu, Ni, Co, Fe, Mo or W, was synthesized by sol–gel technique. Aqueous solution of inorganic salt-precursor was used as a hydrolyzing agent. Initial xerogels and final oxides were characterized using X-ray diffraction analysis, scanning electron microscopy and low-temperature nitrogen adsorption. Decomposition of xerogels was studied by differential thermal analysis. According to X-ray diffraction analysis, all xerogel samples are characterized with turbostratic structures regardless of nature of the second component. At the same time, presence of inorganic salt in magnesium hydroxide matrix shifts the temperature of decomposition of latter towards lower values. Structural and textural characteristics of MgO-based oxide systems were found to be strongly affected by the additive. Formation of joint phase was observed in the case of cobalt oxide. In most cases, additives turned out to be even distributed in the bulk of MgO, except for WO3. This oxide formed large agglomerates because of low solubility of precursor.

Graphical Abstract

Open image in new window

Keywords

Sol–gel synthesis MgO Two-component oxide systems Characterization 

Notes

Acknowledgements

This work has been performed within the state-guaranteed order for Boreskov Institute of Catalysis (project number 0303-2016-0014). DTA experiments were provided using the equipment of Center for Collective Use “Khimiya” (Institute of Chemistry of Komi Scientific Centre UB RAS).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10971_2017_4321_MOESM1_ESM.pdf (679 kb)
Supplementary Information

References

  1. 1.
    Hu J, Chen L, Richards R (2008) Properties, synthesis and applications of highly dispersed metal oxide catalysts. In: Jackson SD, Hargreaves JSJ (Eds) Metal oxide catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, GermanyGoogle Scholar
  2. 2.
    Ozin GA, Arsenault AC, Cademartiri L (2009) Nanochemistry: a chemical approach to nanomaterials. Royal Society of Chemistry, LondonGoogle Scholar
  3. 3.
    Ilyina EV, Mishakov IV, Vedyagin AA (2009) Preparation of nanocrystalline VMg(OH)x and VOx·MgO from organometallic precursors. Inorg Mater 45:1267–1270CrossRefGoogle Scholar
  4. 4.
    Klabunde KJ, Stark J, Koper O, Mohs C, Park DG, Decker S, Jiang Y, Lagadic I, Zhang D (1996) Nanocrystals as stoichiometric reagents with unique surface chemistry. J Phys Chem 100:12142–12153CrossRefGoogle Scholar
  5. 5.
    Ilyina EV, Mishakov IV, Vedyagin AA, Bedilo AF, Klabunde KJ (2013) Promoting effect of vanadium on CF2Cl2 destructive sorption over nanocrystalline mesoporous MgO. Microporous Mesoporous Mater 175:76–84CrossRefGoogle Scholar
  6. 6.
    Ilyina EV, Mishakov IV, Vedyagin AA, Bedilo AF (2013) Aerogel method for preparation of nanocrystalline CoOx-MgO and VOx-MgO catalysts. J Solgel Sci Technol 68:423–428CrossRefGoogle Scholar
  7. 7.
    Bedilo AF, Shuvarakova EI, Volodin AM, Ilyina EV, Mishakov IV, Vedyagin AA, Chesnokov VV, Heroux DS, Klabunde KJ (2014) Effect of modification with vanadium or carbon on destructive sorption of halocarbons over nanocrystalline MgO: The role of active sites in initiation of the solid-state reaction. J Phys Chem C 118:13715–13725CrossRefGoogle Scholar
  8. 8.
    Parmaliana A, Arena F, Frusteri F, Giordano N (1990) Temperature-programmed reduction study of NiO–MgO interactions in magnesia-supported Ni catalysts and NiO–MgO physical mixture. J Chem Soc Faraday Trans 86:2663–2669CrossRefGoogle Scholar
  9. 9.
    Kokubun Y, Amano Y, Meguro Y, Nakagomi S (2016) NiO films grown epitaxially on MgO substrates by sol–gel method. Thin Solid Films 601:76–79CrossRefGoogle Scholar
  10. 10.
    Delmon В (1997) Formation of final catalyst. In: Ertl G Knozinger H, Weitkamp J (Eds) Handbook of Heterogeneous Catalysis, Vol 3. Wiley–VCH, WeinheeimGoogle Scholar
  11. 11.
    Martin C, Rives V, Solana G (1996) Adsorption and oxidation of propan-2-ol on WO3/MgO. React Kinet Catal Lett 58:243–248CrossRefGoogle Scholar
  12. 12.
    Hasegawa S, Tanaka T, Kudo M, Mamada H, Hattori H, Yoshida S (1992) Structure and reactivity of MoO3-MgO catalyst. Catal Lett 12:255–266CrossRefGoogle Scholar
  13. 13.
    Bare SR (1998) Surface Structure of Highly Dispersed MoO3 on MgO Using in Situ Mo L3-Edge XANES. Langmuir 14:1500–1504CrossRefGoogle Scholar
  14. 14.
    Klicpera T, Zdrăzil M (1999) High surface area MoO3/MgO: preparation by the new slurry impregnation method and activity in sulphided state in hydrodesulphurization of benzothiophene. Catal Lett 58:47–51CrossRefGoogle Scholar
  15. 15.
    Zhang W, Tay HL, Lim SS, Wang Y, Zhong Z, Xu R (2010) Supported cobalt oxide on MgO: Highly efficient catalysts for degradation of organic dyes in dilute solutions. Appl Catal B 95:93–99CrossRefGoogle Scholar
  16. 16.
    Szczerba J, Prorok R, Stoch P, Śnieżek E, Jastrzębska I (2015) Position of Fe ions in MgO crystalline structure. Nukleonika 60(1):143–145Google Scholar
  17. 17.
    Flor G, Riccardi R (1976) Kinetics of MgWO4 formation in the solid state reaction between MgO and WO3. Z Naturforsch 31a:619–621Google Scholar
  18. 18.
    Massarotti V, Flor G, Marini A, Riccardi R (1980) Molybdates solid state synthesis: the MgO—MoO3 System. Z Naturforsch 35a:500–502Google Scholar
  19. 19.
    Kamioka N, Ichitsubo T, Uda T, Imashuku S, Taninouchi Y, Matsubara E (2008) Synthesis of spinel-type magnesium cobalt oxide and its electrical conductivity. Mater Trans 49:824–828CrossRefGoogle Scholar
  20. 20.
    Sharma G, Jeevanandam P (2013) Synthesis of MgO supported Co3O4 nanoparticles by a novel thermal decomposition approach and studies on their magnetic properties. Microporous Mesoporous Mater 165:55–62CrossRefGoogle Scholar
  21. 21.
    Fattah Z, Rezaei M, Biabani-Ravandi A, Irankhah A (2014) Preparation of Co–MgO mixed oxide nanocatalysts for low temperature CO oxidation: optimization of preparation conditions. Process Saf Environ Prot 92:948–956CrossRefGoogle Scholar
  22. 22.
    Darbar D, Reddy MV, Sundarrajan S, Pattabiraman R, Ramakrishna S, Chowdari BVR (2016) Anodic electrochemical performances of MgCo2O4 synthesized by oxalate decomposition method and electrospinning technique for Li-ion battery application. Mater Res Bull 73:369–376CrossRefGoogle Scholar
  23. 23.
    Fattah Z, Rezaei M, Biabani-Ravandi A, Irankhah A, Arandiyan HR (2016) Synthesis, characterization and application of Co–MgO mixed oxides in oxidation of carbon monoxide. Chem Eng Commun 203:200–209CrossRefGoogle Scholar
  24. 24.
    Kaviyarasu K, Magdalane CM, Anand K, Manikandan E, Maaza M (2015) Synthesis and characterization studies of MgO:CuO nanocrystals by wet-chemical method. Spectrochim Acta A Mol Biomol Spectrosc 142:405–409CrossRefGoogle Scholar
  25. 25.
    Zanganeh R, Rezaei M, Zamaniyan A (2014) Preparation of nanocrystalline NiO–MgO solid solution powders as catalyst for methane reforming with carbon dioxide: effect of preparation conditions. Adv Powder Technol 25:1111–1117CrossRefGoogle Scholar
  26. 26.
    Jafarbegloo M, Tarlani A, Mesbah AW, Muzart J, Sahebdelfar S (2016) NiO–MgO solid solution prepared by sol–gel method as precursor for Ni/MgO methane dry reforming catalyst: effect of calcination temperature on catalytic performance. Catal Lett 146:238–248CrossRefGoogle Scholar
  27. 27.
    Jafarbegloo M, Tarlani A, Mesbah AW, Sahebdelfar S (2015) One-pot synthesis of NiO-MgO nanocatalysts for CO2 reforming of methane: the influence of active metal content on catalytic performance. J Nat Gas Sci Eng 27:1165–1173CrossRefGoogle Scholar
  28. 28.
    Cai X, Wang H, Zhang Q, Tong J (2014) Selective oxidation of styrene efficiently catalyzed by spinel Mg–Cu ferrite complex oxides in water. J Solgel Sci Technol 69:33–39CrossRefGoogle Scholar
  29. 29.
    Azam M, Riaz S, Akbar A, Naseem S (2015) Structural, magnetic and dielectric properties of spinel MgFe2O4 by sol–gel route. J Solgel Sci Technol 74:340–351CrossRefGoogle Scholar
  30. 30.
    Guo L, Zhong Y, Gao J, Yang Z, Guo Z (2015) Influence of coating MgO with coprecipitation method on sticking during fluidized bed reduction of Fe2O3 particles. Powder Technol 284:210–217CrossRefGoogle Scholar
  31. 31.
    Holec P, Plocek J, Nižňansky D, Vejpravová PJ (2009) Preparation of MgFe2O4 nanoparticles by microemulsion method and their characterization. J Solgel Sci Technol 51:301–305CrossRefGoogle Scholar
  32. 32.
    Mishakov IV, Ilyina EV, Bedilo AF, Vedyagin AA (2009) Nanocrystalline aerogel VOx/MgO as a catalyst for oxidative dehydrogenation of propane. React Kinet Catal Lett 97:355–361CrossRefGoogle Scholar
  33. 33.
    Utamapanya S, Klabunde KJ, Schlup JR (1991) Nanoscale metal oxide particles/clusters as chemical reagents. Synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide. Chem Mater 3:175–181CrossRefGoogle Scholar
  34. 34.
    Shkatulov A, Aristov Y (2015) Modification of magnesium and calcium hydroxides with salts: An efficient way to advanced materials for storage of middle-temperature heat. Energy 85:667–676CrossRefGoogle Scholar
  35. 35.
    Ilyina EV, Mishakov IV, Vedyagin AA, Cherepanova SV, Nadeev AN, Bedilo AF, Klabunde KJ (2012) Synthesis and characterization of mesoporous VOx/MgO aerogels with high surface area. Microporous Mesoporous Mater 160:32–40CrossRefGoogle Scholar
  36. 36.
    Cherepanova SV, Leont’eva NN, Arbuzov AB, Drozdov VA, Belskaya OB, Antonicheva NV (2015) Structure of oxides prepared by decomposition of layered double Mg-Al and Ni-Al hydroxides. J Solid State Chem 225:417–426CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Aleksey A. Vedyagin
    • 1
    • 2
  • Ilya V. Mishakov
    • 1
    • 2
  • Timofey M. Karnaukhov
    • 1
    • 3
  • Elena F. Krivoshapkina
    • 4
    • 5
  • Ekaterina V. Ilyina
    • 1
  • Tatyana A. Maksimova
    • 1
  • Svetlana V. Cherepanova
    • 1
  • Pavel V. Krivoshapkin
    • 4
    • 5
  1. 1.Boreskov Institute of Catalysis SB RASNovosibirskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Institute of Chemistry of Komi SC UB RASSyktyvkarRussia
  5. 5.ITMO UniversitySt. PetersburgRussia

Personalised recommendations