Journal of Sol-Gel Science and Technology

, Volume 81, Issue 2, pp 313–320 | Cite as

Formation of local thorium silicate compound by electrochemical deposition from an acetone solution of thorium nitrate

  • P. V. BorisyukEmail author
  • О. S. Vasilyev
  • А. V. Krasavin
  • Yu. Yu. Lebedinskii
  • V. I. Troyan
  • E. V. Chubunova
  • S. P. Derevyashkin
Original Paper: Functional coatings, thin films and membranes (including deposition techniques)


The results of the study of local formation (diameter of deposited area is about 100 μm) of thorium oxide coatings on SiO2/Si(001) surface by electrochemical deposition are presented. It was found that the electrochemical deposition of thorium atoms from an acetone solution of Th(NO3)4 on silicon surface lead to the formation of thorium-based films. The results of surface analysis by local X-ray photoelectron spectroscopy and X-ray photoemission indicate that these films contain of thorium-, silicon-, oxygen- and carbon-based compounds. After 30 h of annealing at 1350 °C in atmosphere carbon pulled completely, and the compound transforms into thorium silicate films ThSiO4 (Huttonite). Our primary study of ThSiO4 compound by reflection electron energy loss spectroscopy showed that this system have energy gap ~7.7 eV and can be useful for further research of «nuclear clocks» as well as for «nuclear battery».

Graphical Abstract

Open image in new window


Local electrochemical deposition Thorium Silicate Band structure XPS REELS GIXRD 



The authors are grateful to V.G. Efimov and M.M. Grehov for help in experimental processing. The work was supported by the Russian Science Foundation (Project No. 16-19-00168).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Duggirala R, Lal A, Radhakrishnan S (2010) Radioisotope thin-film powered microsystems. Springer, New York, NYCrossRefGoogle Scholar
  2. 2.
    Tkalya EV (2011) Phys Rev Lett 106:162501CrossRefGoogle Scholar
  3. 3.
    Beck BR, Wu CY, Beiersdorfer P, Brown GV, Becker JA, Moody KJ, Wilhelmy JB, Porter FS, Kilbourne CA, Kelley RL (2009) Improved Value for the Energy Splitting of the Ground-State Doublet in the Nucleus 229mTh. Report LLNL-PROC-415170Google Scholar
  4. 4.
    Tkalya EV (2011) Phys Rev Lett 106:162501CrossRefGoogle Scholar
  5. 5.
    Peik Ek, Okhapkin M (2015) Comptes Rendus Physique 16:5Google Scholar
  6. 6.
    Wense L, Seiferle B, Laatiaoui M, Neumayr JB, Maier H-J, Wirth H-F, Mokry C, Runke J, Eberhardt K, Düllmann CE, Trautmann NG, Thirolf PG (2016) Nature 533:47CrossRefGoogle Scholar
  7. 7.
    Jeet J, Schneider Ch, Sullivan ST, Rellergert WD, Mirzadeh S, Cassanho A, Jenssen HP, Tkalya EV, Hudson ER (2015) Phys Rev Lett 114:253001CrossRefGoogle Scholar
  8. 8.
    Campbell CJ, Radnaev AG, Kuzmich A (2011) Phys Rev Lett 106:223001CrossRefGoogle Scholar
  9. 9.
    Troyan VI, Borisyuk PV, Lebedinskii YuYu, Vasiliev OS (2015) Phys Procedia 72:175–178CrossRefGoogle Scholar
  10. 10.
    Shein IR, Shein KI, Medvedeva NI, Ivanovskii AL (2006) Phys Status Solidi B 243:44CrossRefGoogle Scholar
  11. 11.
    Borisyuk PV, Krasavin AV, Tkalya EV, Lebedinskii Yu Yu, Vasiliev OS, Yakovlev VP, Kozlova TI, Fetisov VV (2016) Chem Phys 478:2–7. doi: 10.1016/j.chemphys.2016.07.010
  12. 12.
    Parker W, Bildstain H, Getoff N (1964) Nucl Instrum Method 26:55–60CrossRefGoogle Scholar
  13. 13.
    Mazeina Lena, Ushakov Sergey V, Navrotsky Alexandra, Boatner Lynn A (2005) Geochim Cosmochim Acta 69:4675–4683CrossRefGoogle Scholar
  14. 14.
    Briggs D, Grant JT (2003) Surface analysis by auger and X-ray photoelectron spectroscopy. IM Publications, ChichesterGoogle Scholar
  15. 15.
    Borisyuk PV, Vasilyev OS, Krasavin AV, Lebedinskii Yu Yu, Troyan VI, Tkalya EV (2015) Phys Status Solidi C 12:1333–1337CrossRefGoogle Scholar
  16. 16.
    Moulder JF, Stickle WF, Sobol PE, Bomben K (1992) Handbook of X-ray photoelectron spectroscopy. In: Chastain J (ed) Physical electronics, 2nd edn. Perkin-Elmer, Eden Prairie, MinnesotaGoogle Scholar
  17. 17.
    Teterin YA, Utkin IO, Melnikov IV, Lebedev AM, Teterin AY, Ivanov KE, Nikitin AS, Vukchevich L (2000) J Struct Chem 41:965CrossRefGoogle Scholar
  18. 18.
    Zenkevich A, Lebedinskii Yu, Spiga S, Wiemer C, Scarel G, Fanciulli M (2007) Microelectron Eng 84:2263–2266CrossRefGoogle Scholar
  19. 19.
    Harris LA (1959) J Am Ceram Soc 42:74–77CrossRefGoogle Scholar
  20. 20.
    Kraut EA, Grant RW, Waldrop JR, Kowalczyk SP (1980) Phys Rev Lett 44:1620CrossRefGoogle Scholar
  21. 21.
    Borisyuk PV, Vasil’ev OS, Krasavin AV, Lebedinskii Yu Yu, Troyan VI (2014) Colloid J 76:645CrossRefGoogle Scholar
  22. 22.
    Borisyuk PV, Vasilyev ОS, Krasavin АV, Lebedinskii Yu Yu, Troyan VI (2015) J Sol-Gel Sci Technol 73:580–585CrossRefGoogle Scholar
  23. 23.
    Tkalya EV, Akhrameev EV, Arutyunayn RV, Bol’shov LA, Kondratenko PS (2012) Phys Rev C 85:044612CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations