Journal of Sol-Gel Science and Technology

, Volume 81, Issue 3, pp 704–710 | Cite as

Enhanced catalytic and antibacterial activity of nanocasted mesoporous silver monoliths: kinetic and thermodynamic studies

  • Manisha Sharma
  • Amit Mishra
  • Akansha Mehta
  • Diptiman Choudhury
  • Soumen Basu
Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

Abstract

Use of low-cost heterogeneous renewable catalysts are essential for effective removal of chemical contaminants like 4-nitrophenol (4-NP) from water bodies. In the present study, for the first time use of surface enhanced (14 m2/g) nanocasted mesoporous silver monolith (AgM) through impregnation into silica monoliths (prepared by sol–gel method) has been demonstrated for its catalytic and antibacterial activity. Highly efficient catalytic reduction rate (2.43 min−1) of 4-NP to 4- aminophenol (4-AP) has been demonstrated using 0.2 gL−1 of AgM catalyst. Enhancement of reduction rate is also observed with increase in temperature (from 25 to 40 °C). Removal of microbial contamination from drinking water is also a prime concern for water purification. Mesoporous AgM shows effective antimicrobial activity against gram negative (E. coli) and gram positive (B. subtilis) bacteria with IC50 values of 75.86 ± 0.173 and 74.56 ± 0.103 respectively at 24 h of incubation.

Graphical Abstract

Use of low-cost renewable catalysts is essential for effective removal of a chemical contaminant like 4-nitrophenol (4-NP) from water bodies. Nanocasted mesoporous silver monolith (AgM) synthesized via impregnation into silica monoliths (prepared by sol-gel method) has been demonstrated for its catalytic and antibacterial activity. Mesoporous AgM also showed effective antimicrobial activity against gram negative and gram positive bacteria. Open image in new window

Keywords

Silver monolith Mesoporous Nitrophenol reduction Kinetic study Antibacterial activity 

References

  1. 1.
    Li YP, Cao HB, Liu CM, Zhang Y (2007) J Hazard Mater 148:158–163CrossRefGoogle Scholar
  2. 2.
    Gupta VK, Atar N, Yola ML, Ustundag Z, Uzun L (2014) Water Res 48:210–217CrossRefGoogle Scholar
  3. 3.
    Khan S, Chao C, Waqas M, Arp HPH, Zhu YG (2013) Environ Sci Technol 47:8624–8632CrossRefGoogle Scholar
  4. 4.
    Mittal A, Mittal J, Malviya A, Gupta VK (2009) J Colloid Interf Sci 340:16–26CrossRefGoogle Scholar
  5. 5.
    Armbrüster M, Schlögl R, Grin Y (2014) Sci Technol Adv Mater 15:034803CrossRefGoogle Scholar
  6. 6.
    Woo YT, Lai DY (2001) Aromatic amino and nitro-amino compounds and their halogenated derivatives. In: E Bingham, B. Cohrssen (eds), Patty’s toxicology. Wiley, New YorkGoogle Scholar
  7. 7.
    Mitchell SC, Waring RH (2000) Aminophenols. In: B. Elvers, S. Hawkins, W. Russey (eds), Ullmann’s encyclopedia of industrial chemistry. Wiley, WeinheimGoogle Scholar
  8. 8.
    Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T (2007) J Phys Chem C 111:4596–4605CrossRefGoogle Scholar
  9. 9.
    Pradhan N, Pal A, Pal T (2002) Colloids Surf A 196:247–257CrossRefGoogle Scholar
  10. 10.
    Fedorczyk A, Ratajczak J, Kuzmych O, Skompska M (2015) J Solid State Electrochem 19(9):2849–2858CrossRefGoogle Scholar
  11. 11.
    Tang S, Vongehr S, Meng X (2010) J Phys Chem C 114:977–982CrossRefGoogle Scholar
  12. 12.
    Saha S, Pal A, Kundu S, Basu S, Pal T (2010) Langmuir 26:2885–2893CrossRefGoogle Scholar
  13. 13.
    Naikoo GA, Dar RA, Khan F (2014) J Mater Chem A 2:11792–11798CrossRefGoogle Scholar
  14. 14.
    Dar RA, Naikoo GA, Kalambate PK, Giri L, Khan F, Karna SP, Srivastava AK (2015) Electrochem Acta 163:196–203CrossRefGoogle Scholar
  15. 15.
    Xia BY, Ng WT, Wu HB, Wang X, Lou XW (2012) Angew Chem Int Ed 51:7213CrossRefGoogle Scholar
  16. 16.
    Wei Y, Liu J, Zhao Z, Duan A, Jiang G, Xu C, Gao J, He H, Wang X (2011) Energy Environ Sci 4:2959–2970CrossRefGoogle Scholar
  17. 17.
    Yang H, Liu Y, Shen Q, Chen L, You W, Wang X, Sheng J (2012) J Mater Chem 22:24132–24138CrossRefGoogle Scholar
  18. 18.
    Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG (2009) Biometals 22:235–242CrossRefGoogle Scholar
  19. 19.
    Petrochenko PE, Skoog SA, Zhang Q, Comstock DJ, Elam JW, Goering PL, Narayan RJ (2013) Biomatter, doi:e25528-1–e25528-7Google Scholar
  20. 20.
    Subhankari I, Nayak PL (2013) World J Nano Sci Technol 2:10–13Google Scholar
  21. 21.
    Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2007) J Colloid Interface Sci 315:389–395CrossRefGoogle Scholar
  22. 22.
    Sheikh MUD, Naikoo GA, Thomas M, Bano M, Khan F (2015) J Sol-Gel Sci Technol 76:572–581CrossRefGoogle Scholar
  23. 23.
    Khan F, Mann S (2009) J Phys Chem C 113:19871–19874CrossRefGoogle Scholar
  24. 24.
    Tian Y, Qi J, Zhang W, Cai Q, Jiang X (2014) ACS Appl Mater Interfaces 6:12038–12045CrossRefGoogle Scholar
  25. 25.
    Netzer NL, Gunawidjaja R, Hiemstra M, Zhang Q, Tsukruk VV, Jiang C (2009) ACS Nano 3:1795–1802CrossRefGoogle Scholar
  26. 26.
    Smått J-H, Schunk SA, Lindén M (2003) Chem Mater 15:2354CrossRefGoogle Scholar
  27. 27.
    Shameli K, Ahmad M, Yunus WMZW, Rustaiyan A, Ibrahim NA, Zargar M, Abdollahi Y (2010) Int J Nanomed 5:875–887CrossRefGoogle Scholar
  28. 28.
    Smatt J-H, Sayler FM, Grano AJ, Bakker MG (2012) Adv Eng Mater. doi:10.1002/adem.201100355
  29. 29.
    Guo P, Tang L, Deng Y, Ma L, Tan S, Tang J, Zeng G, Huang B, Dong H, Zhang Y, Zhou Y (2016) J Colloid Interface Sci 469:78–85CrossRefGoogle Scholar
  30. 30.
    Sharma M, Mishra A, Kumar V, Basu S (2016) NANO: Brief Reports and Reviews 11(4):1650046CrossRefGoogle Scholar
  31. 31.
    Rothenberg G (2008) Catalysis: Concepts and Green Application. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 11CrossRefGoogle Scholar
  32. 32.
    Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Acta Biomater 4(3):707–716CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Manisha Sharma
    • 1
  • Amit Mishra
    • 1
  • Akansha Mehta
    • 1
  • Diptiman Choudhury
    • 1
  • Soumen Basu
    • 1
  1. 1.School of Chemistry and BiochemistryThapar UniversityPatialaIndia

Personalised recommendations