Journal of Sol-Gel Science and Technology

, Volume 81, Issue 3, pp 741–749 | Cite as

Towards the hydrothermal growth of hierarchical cauliflower-like TiO2 anatase structures

  • Imperio Anel Perales-MartínezEmail author
  • Vicente Rodríguez-González
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


TiO2 anatase nanostructure-based hierarchical spheres were synthesized by using a facile microwave-assisted hydrothermal method. H2SO4 was used as both phase inducer for the formation of anatase and capping agent to promote the self-assembly of cauliflower-like spheres. The hydrothermal synthesis was carried out at 180 °C for 2 h from an acid colloidal solution of titanium tetraisopropoxide, at pH < 2. The relationship between morphology and structure was studied by the means of X-ray diffraction, high-resolution transmision electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, nitrogen adsorption and ultraviolet-visible spectroscopy analyses. The results revealed that the acid concentration is a key factor to the controlled hydrothermal aggregation of TiO2 anatase faceted-like nanoparticles, leading to hierarchical cauliflower-like structures. The microspheres consist of hierarchical structures of sheet-shaped TiO2 anatase particles with exposed {001} and {101} facets. The nanostructures grow in preferential directions to become in sheet-shaped, by an oriented attachment mechanism. The sulphate groups anchored on the surface and detected by X-ray photoelectron spectroscopy, help the hydrothermal formation of hierarchical spheres and then the cauliflower-like morphology.

Graphical Abstract

Open image in new window


Hierarchical cauliflower-like structures H2SO4 as capping agent Exposed facets Microwave-assisted hydrothermal method Acid colloidal solution 



The authors would like to express their gratitude to CONACYT for the financial support (CB-2011/169597 and LINAN-0271911). We thank M. C. Beatriz A. Rivera Escoto, Dr. Gladis J. Labrada and Dr. Hector Silva from LINAN-IPICYT for the XRD, FE-SEM and HRTEM characterizations. I. A. Perales Martinez appreciates the CONACYT PhD scholarship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Yang HG, Liu G, Qiao SZ, Sun CH, Jin YG, Smith SC, Zou J, Cheng HM, Lu GQ (2009) Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J Am Chem Soc 131:4078–4083CrossRefGoogle Scholar
  2. 2.
    Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229CrossRefGoogle Scholar
  3. 3.
    Liu G, Yang HG, Wang X, Cheng L, Lu H, Wang L, Lu GQ, Cheng HM (2009) Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant {001} facets. J Phys Chem C 113:21784–21788CrossRefGoogle Scholar
  4. 4.
    Shengyuan Y, Peining Z, Nair AS, Ramakrishna S (2011) Rice grain-shaped TiO2 mesostructures-synthesis, characterization and applications in dye-sensitized solar cells and photocatalysis. J Mater Chem 21:6541–6548CrossRefGoogle Scholar
  5. 5.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRefGoogle Scholar
  6. 6.
    Liu M, Piao L, Lu W, Ju S, Zhao L, Zhou C, Li H, Wang W (2010) Flower-like TiO2 nanostructures with exposed {001} facets: Facile synthesis and enhanced photocatalysis. Nanoscale 2:1115–1117CrossRefGoogle Scholar
  7. 7.
    Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638–641CrossRefGoogle Scholar
  8. 8.
    Fang WQ, Gong XQ, Yang HG (2011) On the unusual properties of anatase TiO2 exposed by highly reactive facets. J Phys Chem Lett 2:725–734CrossRefGoogle Scholar
  9. 9.
    Perales-Martínez IA, Rodríguez-González V, Lee SW (2014) Insights into nanocube-like morphological transformation of P25 by microwave-assisted hydrothermal method. Mater Lett 123:10–13CrossRefGoogle Scholar
  10. 10.
    Zhang D, Li G, Wang H, Chan KM, Yu JC (2010) Biocompatible anatase single-crystal photocatalysts with tunable percentage of reactive facets. Cryst Growth Des 10:1130–1137CrossRefGoogle Scholar
  11. 11.
    Montini T, Gombac V, Sordelli L, Delgado JJ, Chen X, Adami G, Fornasiero P (2011) Nanostructured Cu/TiO2 photocatalysts for H2 production from Ethanol and Glycerol aqueous solution. Chem Cat Chem 3:574–577Google Scholar
  12. 12.
    Rodríguez-González V, Obregón Alfaro S, Torres-Martínez LM, Cho SH, Lee SW (2010) Silver–TiO2 nanocomposites: synthesis and harmful algae Bloom UV-photoelimination. Appl Catal B: Environ 98:229–234CrossRefGoogle Scholar
  13. 13.
    Porkodi K, Arokiamary SD (2007) Synthesis and spectroscopic characterization of nanostructured anatase titania: a photocatalyst. Mater Charact 58:495–503CrossRefGoogle Scholar
  14. 14.
    Wang W, Lu C, Ni Y, Xu Z (2013) Crystal facet growth behavior and thermal stability of {001} faceted anatase TiO2: mechanistic role of gaseous HF and visible-light photocatalytic activity. Cryst Eng Comm 15:2537–2543CrossRefGoogle Scholar
  15. 15.
    Zhang H, Wang Y, Liu P, Han Y, Yao X, Zou J, Cheng H, Zhao H (2011) Anatase TiO2 crystal facet growth: mechanistic role of hydrofluoric acid and photoelectrocatalytic activity. Appl Mater Interfaces 3:2472–2478CrossRefGoogle Scholar
  16. 16.
    Zhang H, Liu P, Li F, Liu H, Wang Y, Zhang S, Guo M, Cheng H, Zhao H (2011) Facile fabrication of anatase TiO2 microspheres on solid substrates and surface crystal facet transformation from {001} to {101}. Chem Eur J 17:5949–5957CrossRefGoogle Scholar
  17. 17.
    Liu S, Yu J, Jaroniec M (2010) Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. J Am Chem Soc 132:11914–11916CrossRefGoogle Scholar
  18. 18.
    Ma XY, Chen ZG, Hartono SB, Jiang HB, Zou J, Qiao SZ, Yang HG (2010) Fabrication of uniform anatase TiO2 particles exposed by {001} facets. Chem Commun 46:6608–6610CrossRefGoogle Scholar
  19. 19.
    Wang D, Zhou F, Liu Y, Liu W (2008) Synthesis and characterization of anatase TiO2 nanotubes with uniform diameter from titanium powder. Mater Lett 62:1819–1822CrossRefGoogle Scholar
  20. 20.
    Wang D, Yu B, Zhou F, Wang C, Liu W (2009) Synthesis and characterization of anatase TiO2 nanotubes and their use in dye-sensitized solar cells. Mater Chem Phys 113:602–606CrossRefGoogle Scholar
  21. 21.
    Aphairaja D, Wirunmongkol T, Pavasupree S, Limsuwan P (2012) Synthesis of titanate nanotubes from thai leucoxene mineral. Procedia Eng 32:1068–1072CrossRefGoogle Scholar
  22. 22.
    Xia XH, Lia Y, Wang Z, Fan J, Luo YS, Jia SJ (2008) Synthesis and photocatalytic properties of TiO2 nanostructures. Mater Res Bull 43:2187–2195CrossRefGoogle Scholar
  23. 23.
    Dai Y, Cobley CM, Zeng J, Sun Y, Xia Y (2009) Synthesis of anatase TiO2 nanocrystals with exposed {001} facets. Nano Lett 9:2455–2459CrossRefGoogle Scholar
  24. 24.
    Zhao Z, Sun Z, Zhao H, Zheng M, Du P, Zhao J, Fan H (2012) Phase control of hierarchically structured mesoporous anatase TiO2 microspheres covered with {001} facets. J Mater Chem 22:21965–21971CrossRefGoogle Scholar
  25. 25.
    Wang L, Zang L, Zhao J, Wang C (2012) Green synthesis of shape-defined anatase TiO2 nanocrystals wholly exposed with {001} and {100} facets. Chem Commun 48:11736–11738CrossRefGoogle Scholar
  26. 26.
    Ong WJ, Tan LL, Chai SP, Yong ST, Mohamed AR (2014) Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale 6:1946–2008CrossRefGoogle Scholar
  27. 27.
    Lee WJ, Sung YM (2012) Synthesis of anatase nanosheets with exposed (001) facets via chemical vapor deposition. Cryst Growth Des 12:5792–5795CrossRefGoogle Scholar
  28. 28.
    Li T, Tian B, Zhang J, Dong R, Wang T, Yang F (2013) Facile tailoring of anatase TiO2 morphology by use of H2O2: From microflowers with dominant {101} facets to microspheres with exposed {001} facets. Ind Eng Chem Res 52:6704–6712CrossRefGoogle Scholar
  29. 29.
    Yuan CAO, Hong-juan WEI, Zhi-ning XIA (2009) Advances in microwave assisted synthesis of ordered mesoporous materials. Trans Nonferrous Met Soc China 19:656–664CrossRefGoogle Scholar
  30. 30.
    Shi S, Hwang JY (2003) Microwave-assisted wet chemical synthesis: Advantages, significance, and steps to industrialization. J Miner Mater Charact Eng 2:101–110Google Scholar
  31. 31.
    Perales-Martínez IA, Rodríguez-González V, Lee SW, Obregón S (2015) Facile synthesis of InVO4/TiO2 heterojunction photocatalysts with enhanced photocatalytic properties under UV–vis irradiation. J Photochem Photobio A 299:152–158CrossRefGoogle Scholar
  32. 32.
    Bischoff BL, Anderson MA (1995) Peptization process in the sol-gel preparation of porous anatase (TiO2). Chem Mater 7:1772–1778CrossRefGoogle Scholar
  33. 33.
    Zheng Z, Huang B, Qin X, Zhang X, Dai Y, Jiang M, Wang P, Whangbo MH (2009) Highly efficient photocatalyst: TiO2 microspheres produced from TiO2 nanosheets with a high percentage of reactive {001} facets. Chem Eur J 15:12576–12579CrossRefGoogle Scholar
  34. 34.
    Perales-Martínez IA, Rodríguez-González V, Obregon-Alfaro S, Lee SW (2015) Facile synthesis of decahedral particles of anatase TiO2 with exposed {001} facets. J Nanosci Nanotechnol 15:7351–7356CrossRefGoogle Scholar
  35. 35.
    Pan J, Wu X, Wang L, Liu G, Lub GQ, Cheng HM (2011) Synthesis of anatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. Chem Commun 47:8361–8363CrossRefGoogle Scholar
  36. 36.
    Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl Catal A 265:115–121CrossRefGoogle Scholar
  37. 37.
    Shao J, Li X, Zhang L, Qu Q, Zheng H (2013) Core–shell sulfur@polypyrrole composites as highcapacity materials for aqueous rechargeable batteries. Nanoscale 5:1460–1464CrossRefGoogle Scholar
  38. 38.
    Khodayari R, Odenbrand CUI (2001) Regeneration of commercial SCR catalysts by washing and sulphation: effect of sulphate groups on the activity. Appl Catal B Environ 33:277–291CrossRefGoogle Scholar
  39. 39.
    Khmeleva TN, Georgiev TV, Jasieniak M, Skinner WM, Beattie DA (2005) XPS and ToF-SIMS study of a chalcopyrite– pyrite–sphalerite mixture treated with xanthate and sodium bisulphite. Surf Interface Anal 37:699–709CrossRefGoogle Scholar
  40. 40.
    Zeng HC (2007) Ostwald ripening: a synthetic approach for hollow nanomaterials. Current Nanosci 3:177–181CrossRefGoogle Scholar
  41. 41.
    Yang W, Li J, Wang Y, Zhu F, Shi W, Wan F, Xu D (2011) A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells. Chem Commun 47:1809–1811CrossRefGoogle Scholar
  42. 42.
    Zhang H, Han Y, Liu X, Liu P, Yu H, Zhang S, Yao X, Zhao H (2010) Anatase TiO2 microspheres with exposed mirror-like plane {001} facets for high performance dye-sensitized solar cells (DSSCs). Chem Commun 46:8395–8397CrossRefGoogle Scholar
  43. 43.
    Hu X, Zhang T, Jin Z, Huang S, Fang M, Wu Y, Zhang L (2009) Single-crystalline anatase TiO2 dous assembled micro-sphere and their photocatalytic activity. Cryst Growth Des 9:2324–2328CrossRefGoogle Scholar
  44. 44.
    Luo ZH, Zhou XS, Jin B, Luo J, Xu XY, Chen LY (2015) Synthesis and characterization of novel titanium dioxide microspheres with exposed {001} facets. Chem Lett 44:256–258CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Imperio Anel Perales-Martínez
    • 1
    Email author
  • Vicente Rodríguez-González
    • 2
  1. 1.Instituto Tecnologico y de Estudios Superiores de MonterreyCampus MonterreyC.P. 64849 Monterrey, Nuevo LeónMexico
  2. 2.División de Materiales AvanzadosIPICYT (Instituto Potosino de Investigación Científica y Tecnológica)San Luis PotosíMexico

Personalised recommendations