Journal of Sol-Gel Science and Technology

, Volume 81, Issue 2, pp 600–610 | Cite as

Absorption capacity, kinetics and mechanical behaviour in dry and wet states of hydrophobic DEDMS/TEOS-based silica aerogels

  • Víctor Morales-Florez
  • Manuel Piñero
  • Verónica Braza
  • María del Mar Mesa
  • Luis Esquivias
  • Nicolás de la Rosa-Fox
Original Paper: Sol-gel and hybrid materials with surface modification for applications

Abstract

This work is a new approach to the study of the structural, mechanical and absorption properties of hybrid organic/inorganic silica-based aerogels. Diethoxydimethylsilane and tetraethoxysilane have been used as precursors. Changes in properties such as specific surface area, porous volume, pore radius, and surface texture and chemistry were researched as a function of the relative organic content. In addition, the absorption properties were tested for different organic liquids. The discrepancy in the absorption mechanisms and the kinetics of pure inorganic and hybrid samples were discussed. It was confirmed that swelling occurs in samples with high organic content, which, in turn, governs the absorption process. Finally, the mechanical behaviour was studied by uniaxial compression. A significant rise of the rupture strain up to 0.45 and a 10-fold decrease in the Young’s modulus to 7.8 MPa were measured in the dry samples by increasing the organic content. The mechanical response of the samples after saturation by the absorption of two reference oily liquids, namely, common motor oil and liquid polydimethylsiloxane, was also compared with the behaviour of dry samples. The presence of liquid within the sample reduced the value of the mechanical parameters in almost all cases. Moreover, the inclusion of organic chains also made the wet aerogels highly deformable. In summary, these first results suggest that tuning the organic ratio of the hybrid aerogels allows the control of not only the structural and mechanical properties but also the absorption properties.

Graphical abstract

Open image in new window

Keywords

Hybrid aerogel materials DEDMS–TEOS Nanostructure Absorption capacity Swelling Uniaxial compression 

Notes

Acknowledegments

V.M-F. thanks the post-doctoral grant from the “V Plan Propio de Investigación” from the University of Seville. In addition, contributions and help supplied by the ImageJ software package developers, from the National Institutes of Health of the US (http://imagej.nih.gov/ij), and from the webmasters and owners of www.citethisforme.com have also to be recognized. Technical staff of the CITIUS (Universidad de Sevilla) is also acknowledged for their help in the characterization of the samples and the funding from the “Proyecto de Excelencia, P09-TEP-5463” of the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía is acknowledged as well.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10971_2016_4203_MOESM1_ESM.docx (4 mb)
Supplementary Material

References

  1. 1.
    Alava M, Dubé M, Rost M (2004) Imbibition in disordered media. Adv Phys 53:83–175. doi: 10.1080/00018730410001687363 CrossRefGoogle Scholar
  2. 2.
    Bear J (1988) Dynamics of fluids in porous media. Dover publications INC., New YorkGoogle Scholar
  3. 3.
    Adebajo M, Frost R, Kloprogge J, Carmody O, Kokot S (2003) Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J Porous Mater 10:159–170. doi: 10.1023/a:1027484117065 CrossRefGoogle Scholar
  4. 4.
    Omidian H, Hashemi S, Sammes P, Meldrum I (1998) A model for the swelling of superabsorbent polymers. Polymer 39:6697–6704. doi: 10.1016/s0032-3861(98)00095-0 CrossRefGoogle Scholar
  5. 5.
    Fratzl P, Barth F (2009) Biomaterial systems for mechanosensing and actuation. Nature 462:442–448. doi: 10.1038/nature08603 CrossRefGoogle Scholar
  6. 6.
    Burgert I, Fratzl P (2009) Actuation systems in plants as prototypes for bioinspired devices. Philos Trans A Math Phys Eng Sci 367:1541–1557. doi: 10.1098/rsta.2009.0003 CrossRefGoogle Scholar
  7. 7.
    Anderson AM, Carroll MK (2011) In: Aegerter MA, Leventis N, Koebel MM (eds), Aerogels handbook, advances in sol-gel derived materials and technologies, Springer-Verlag New York. doi: 10.1007/978-1-4419-7589-8_4
  8. 8.
    Standeker S, Novak Z, Knez Ž (2007) Adsorption of toxic organic compounds from water with hydrophobic silica aerogels. J Colloid Interface Sci 310:362–368. doi: 10.1016/j.jcis.2007.02.021 CrossRefGoogle Scholar
  9. 9.
    Anderson A, Carroll M, Green E, Melville J, Bono M (2010) Hydrophobic silica aerogels prepared via rapid supercritical extraction. J Sol-Gel Sci Technol 53:199–207. doi: 10.1007/s10971-009-2078-z CrossRefGoogle Scholar
  10. 10.
    Martín L, Ossó J, Ricart S, Roig A, García O, Sastre R (2008) Organo-modified silica aerogels and implications for material hydrophobicity and mechanical properties. J Mater Chem 18:207–213. doi: 10.1039/b712553d CrossRefGoogle Scholar
  11. 11.
    Mackenzie JD, Bescher E (1998) Structures, properties and potential applications of Ormosils. J Sol-gel Sci Technol 13:371–377CrossRefGoogle Scholar
  12. 12.
    De la Rosa-Fox N, Morales-Flórez V, Toledo-Fernández JA, Piñero M, Mendoza-Serna R, Esquivias L (2007) Nanoindentation on hybrid organic-inorganic silica aerogels. J Eur Ceram Soc 11:3311–3316. doi: 10.1016/.jeurceramsoc.2007.02.09 CrossRefGoogle Scholar
  13. 13.
    Randall J, Meador M, Jana S (2011) Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl Mater Interfaces 3:613–626. doi: 10.1021/am200007n CrossRefGoogle Scholar
  14. 14.
    Morales-Flórez V, Rosa-Fox N, Piñero M, Esquivias L (2005) The cluster model: a simulation of the aerogel structure as a hierarchically-ordered arrangement of randomly packed spheres. J Sol-Gel Sci Technol 35:203–210. doi: 10.1007/s10971-005-2363-4 CrossRefGoogle Scholar
  15. 15.
    Pierre A, Rigacci A (2011) In: Aegerter MA, Leventis N, Koebel MM (eds), Aerogels handbook, advances in sol-gel derived materials and technologies, Springer-Verlag New York. doi: 10.1007/978-1-4419-7589-8_4
  16. 16.
    Choi S, Kwon T, Im H, Moon D, Baek D, Seol M, Duarte J, Choi Y (2011) A Polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl Mater Interfaces 3:4552–4556. doi: 10.1021/am201352w CrossRefGoogle Scholar
  17. 17.
    Zhao X, Li L, Li B, Zhang J, Wang A (2014) Durable superhydrophobic/superoleophilic PDMS sponges and their applications in selective oil absorption and in plugging oil leakages. J Mater Chem A 2:18281–18287. doi: 10.1039/c4ta04406a CrossRefGoogle Scholar
  18. 18.
    Yoo S, Cohen C, Hui C (2006) Mechanical and swelling properties of PDMS interpenetrating polymer networks. Polymer 47:6226–6235. doi: 10.1016/j.polymer.2006.06.035 CrossRefGoogle Scholar
  19. 19.
    Haraguchi K, Takehisha T (2002) Nanocomposite hydrogels; a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124CrossRefGoogle Scholar
  20. 20.
    Rosa-Fox N, Morales-Flórez V, Toledo-Fernández J, Piñero M, Esquivias L, Keiderling U (2008) SANS study of hybrid silica aerogels under “in situ” uniaxial compression. J Sol-Gel Sci Technol 45:245–250. doi: 10.1007/s10971-008-1686-3 CrossRefGoogle Scholar
  21. 21.
    Babonneau F, Bois L, Maquet J, Livage J (1992) In: Vilminot S, Nass R, Schmidt H (eds), Eurogel’91 - progress in research and development of processes and products from sols and gels. Elsevier Science Publishers, Amsterdam.Google Scholar
  22. 22.
    Babonneau F (1994) Hybrid siloxane-oxide materials via sol-gel processing: Structural characterization. Polyhedron 13:1123–1130. doi: 10.1016/s0277-5387(00)80249-1 CrossRefGoogle Scholar
  23. 23.
    Gedde U, Hellebuych A, Hedenqvist M (1996) Sorption of low molar mass silicones in silicone elastomers. Polym Eng Sci 36:2077–2082. doi: 10.1002/pen.10603 CrossRefGoogle Scholar
  24. 24.
    Morales-Flórez V, Toledo-Fernandez JA, De la Rosa-Fox N, Piñero M, Esquivias L (2008) Percolation of the organic phase in hybrid organic–inorganic aerogels. J Sol-Gel Sci Technol 50:170–175. doi: 10.1007/s10971-008-1874-1 CrossRefGoogle Scholar
  25. 25.
    Zhuravlev LT (2000) The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surface A 173:1–38. doi: 10.1016/S0927-7757(00)00556-2 CrossRefGoogle Scholar
  26. 26.
    Portaccio M, Della Ventura B, Mita D, Manolova N, Stoilova O, Rashkov I, Lepore M (2011) FT-IR microscopy characterization of sol–gel layers prior and after glucose oxidase immobilization for biosensing applications. J Sol-Gel Sci Technol 57:204–211. doi: 10.1007/s10971-010-2343-1 CrossRefGoogle Scholar
  27. 27.
    Al-Oweini R, El-Rassy H (2009) Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J Mol Struct 919:140–145. doi: 10.1016/j.molstruc.2008.08.025 CrossRefGoogle Scholar
  28. 28.
    Wu W, Chuang C, Lin J (2000) Bonding geometry and reactivity of methoxy and ethoxy groups adsorbed on powdered TiO2. J Phys Chem B 104:8719–8724. doi: 10.1021/jp0017184 CrossRefGoogle Scholar
  29. 29.
    Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic−inorganic nanocomposite materials. Chem Mater 13:3169–3183. doi: 10.1021/cm0101069 CrossRefGoogle Scholar
  30. 30.
    Morales-Flórez V, Piñero M, de la Rosa-Fox N, Esquivias L, Anta J, Primera J (2008) The cluster model: A hierarchically-ordered assemblage of random-packing spheres for modelling microstructure of porous materials. J Non-Cryst Solids 354:193–198. doi: 10.1016/j.jnoncrysol.2007.07.061 CrossRefGoogle Scholar
  31. 31.
    Morales-Flórez V, Rosa-Fox N, Piñero M, Esquivias L (2005) The cluster model: a simulation of the aerogel structure as a hierarchically-ordered arrangement of randomly packed spheres. J Sol-Gel Sci Technol 35:203–210. doi: 10.1007/s10971-005-2363-4 CrossRefGoogle Scholar
  32. 32.
    Gruener S, Hermes H, Schillinger B, Egelhaaf S, Huber P (2015) Capillary rise dynamics of liquid hydrocarbons in mesoporous silica as explored by gravimetry, optical and neutron imaging: nano-rheology and determination of pore size distributions from the shape of imbibition fronts. Colloid Surface A. doi: 10.1016/j.colsurfa.2015.09.055
  33. 33.
    Mosquera M, Rivas T, Prieto B, Silva B (2000) Capillary rise in granitic rocks: interpretation of kinetics on the basis of pore structure. J Colloid Interface Sci 222:41–45. doi: 10.1006/jcis.1999.6612 CrossRefGoogle Scholar
  34. 34.
    Zhang Z, Gorman BP, Dong H, Orozco-Teran RA, Mueller DW, Reidy RF (2003) Investigation of polymerization and cyclization of dimethyldiethoxysilane by 29Si NMR and FTIR. J Sol-Gel Sci Technol 28:159–165. doi: 10.1023/A:1026098729993 CrossRefGoogle Scholar
  35. 35.
    Leventis N, Lu H (2011) In: Aegerter MA, Leventis N, Koebel MM (eds), Aerogels handbook, advances in sol-gel derived materials and technologies, Springer-Verlag New York. doi:  10.1007/978-1-4419-7589-8_13
  36. 36.
    Piñero M, Morales-Florez V, De la Rosa-Fox N, Esquivias L (2005) Propiedades mecánicas de aerogeles híbridos de sílice. Bol Soc Esp Cerám V 44:291–203CrossRefGoogle Scholar
  37. 37.
    De la Rosa-Fox N, Toledo-Fernández JA, Morales-Florez V, Piñero M, Esquivias L (2010) Creep and stress relaxation of hybrid organic-inorganic aerogels. Key Eng Mater 423:167–172. doi: 10.4028/www.scientific.net/KEM.423.167 CrossRefGoogle Scholar
  38. 38.
    Kamitakahara M, Kawashita M, Miyata N, Kokubo T, Nakamura T (2001) Bioactivity and mechanical properties of polydimethylsiloxane (PDMS)-CaO-SiO2 hybrids with different PDMS contents. J Sol-Gel Sci Technol 21:75–81. doi: 10.1023/a:1011261617377 CrossRefGoogle Scholar
  39. 39.
    Esquivias L, Morales-Flórez V, Piñero M, de la Rosa-Fox N (2005) Structure of bioactive mixed polymer/colloid aerogels. J Non-Cryst Solids 351:3347–3355. doi: 10.1016/j.jnoncrysol.2005.08.007 CrossRefGoogle Scholar
  40. 40.
    Toledo-Fernández J, Mendoza-Serna R, Morales V, de la Rosa-Fox N, Piñero M, Santos A, Esquivias L (2007) Bioactivity of wollastonite/aerogels composites obtained from a TEOS–MTES matrix. J Mater Sci: Mater Med 19:2207–2213. doi: 10.1007/s10856-007-3312-2 Google Scholar
  41. 41.
    Toledo Fernández J, Mendoza-Serna R, Santos A, Piñero M, Rosa-Fox N, Esquivias L (2008) Improvement of the bioactivity of organic–inorganic hybrid aerogels/wollastonite composites with TiO2. J Sol-Gel Sci Technol 45:261–267. doi: 10.1007/s10971-007-1674-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Dpto. Física de la Materia Condensada, Facultad de FísicaUniversidad de Sevilla Av. Reina Mercedes s/nSevillaSpain
  2. 2.Instituto de Ciencia de Materiales de Sevilla CSIC-USSevillaSpain
  3. 3.Dpto. Física Aplicada, Escuela Superior de IngenieríaUniversidad de CádizCádizSpain
  4. 4.Dpto. Ciencias de los Materiales e Ingeniería Metalúrgica y Química Inorganica, Facultad de Ciencias Universidad de CádizCádizSpain
  5. 5.Dpto. Ing. Química y Tecnologías del Medio Ambiente Facultad de Ciencias Universidad de CádizCádizSpain
  6. 6.Dpto. Física de la Materia CondensadaFacultad de Ciencias Universidad de CádizCádizSpain

Personalised recommendations