Advertisement

Journal of Sol-Gel Science and Technology

, Volume 81, Issue 1, pp 195–204 | Cite as

Validation of the COMPASS force field for complex inorganic–organic hybrid polymers

  • Thomas S. Asche
  • Peter Behrens
  • Andreas M. SchneiderEmail author
Original Paper: Modelling, computational tools and theoretical studies of sol-gel and hybrid materials

Abstract

Inorganic–organic hybrid polymers are promising alternatives to simple organic polymers. They combine the advantages of organic and inorganic components in one homogeneous material, which can be adjusted to match sophisticated demands for various possible applications ranging from soft silicones to hard hybrid ceramics. Typically, the inorganic network is formed by a sol-gel reaction whereas the organic network is built by a polymerization reaction. Due to their complex architecture on a molecular level, it is often impossible to experimentally obtain information on the atomistic structures of such hybrid materials. In this work, we validate the all-atom COMPASS force field for the simulation of such materials on the basis of a simplified test system with (methacryloyloxymethyl)dimethylethoxysilane as a precursor; which has only one functionality for inorganic condensation, building only one defined condensation product in the sol-gel reaction. The force field was validated based on the experimentally determined single crystal structure of this condensation product and the calculation of its glass transition and melting temperatures by molecular dynamics. The prediction of fluid densities was validated on liquids of the precursor and the condensation product. The validated force field is applied to demonstrate the influence of inorganic cross-linking in the resulting polymer on a simplified network model.

Graphical Abstract

Open image in new window

Keywords

Ormocer® Inorganic–organic hybrid polymer Simulation Molecular dynamics Force field validation Compass 

Notes

Acknowledgments

The authors would like to thank Robert Zahn at “Deutsches Institut für Kautschuktechnologie e.V.” for the DSC measurements and Dr. Michael Wiebcke and Fabian L. Kempf for assistance in the X-ray single crystal structure determination. The financial support of the Deutsche Forschungsgemeinschaft (DFG) within the priority program 1327 “sub-100 nm structures” is gratefully acknowledged. Individual financial support is granted to Thomas S. Asche by the graduate program MARIO, sponsored by the State of Lower Saxony. S. Steenhusen and R. Houbertz at Fraunhofer Institut für Silicatforschung, Würzburg kindly provided information on the material.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

10971_2016_4185_MOESM1_ESM.pdf (135 kb)
Supplementary Material
10971_2016_4185_MOESM2_ESM.docx (510 kb)
Supplementary Information 1

References

  1. 1.
    Kickelbick G (2007) Hybrid materials. Synthesis, characterization, and applications, 1st ed. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  2. 2.
    Sanchez C, Belleville P, Popall M, Nicole L (2011) Chem Soc Rev 40:696–753Google Scholar
  3. 3.
    Haas K-H (2000) Adv Eng Mater 2:571–582Google Scholar
  4. 4.
    Schmidt HK (1988) DVS-Berichte 110:54–56Google Scholar
  5. 5.
    Schmidt HK, Popall M (1990) Proc SPIE 1328:249–257Google Scholar
  6. 6.
    Schmidt H, Wolter H (1990) J Non Cryst Solids 121:428–435Google Scholar
  7. 7.
    Haas K-H, Wolter H (1999) Curr Opin Solid State Mater Sci 4:571–580Google Scholar
  8. 8.
    Haas K-H, Rose K (2003) Rev Adv Mater Sci 5:47–52Google Scholar
  9. 9.
    Maruo S, Nakamura O, Kawata S (1997) Opt Lett 22:132–134Google Scholar
  10. 10.
    Burmeister F, Steenhusen S, Houbertz R, Zeitner UD, Nolte S, Tünnermann A (2012) J Laser Appl 24:042014Google Scholar
  11. 11.
    Burmeister F, Steenhusen S, Houbertz R, Asche TS, Nickel J, Nolte S, Tucher N, Josten P, Obel K, Wolter H, Fessel S, Schneider AM, Gärtner K-H, Beck C, Behrens P, Tünnermann A, Walles H (2015) In: A Ostendorf, K König (eds) Optically induced nanostructures. Walter de Gruyter Inc., BerlinGoogle Scholar
  12. 12.
    Reinhardt C, Ferreras Paz V, Zheng L, Kurselis K, Birr T, Zywietz U, Chichkov B, Frenner K, Osten W (2015) In: A Ostendorf, K König (eds) Optically induced nanostructures. Walter de Gruyter Inc., BerlinGoogle Scholar
  13. 13.
    Houbertz R, Fröhlich L, Popall M, Streppel U, Dannberg P, Bräuer A, Serbin J, Chichkov BN (2003) Adv Eng Mater 5:551–555Google Scholar
  14. 14.
    Serbin J, Egbert A, Ostendorf A, Chichkov BN, Houbertz R, Domann G, Schulz J, Cronauer C, Fröhlich L, Popall M (2003) Opt Lett 28:301–303Google Scholar
  15. 15.
    Houbertz R, Domann G, Cronauer C, Schmitt A, Martin H, Park J-U, Fröhlich L, Buestrich R, Popall M, Streppel U, Dannberg P, Wächter C, Bräuer A (2003) Thin Solid Films 442:194–200Google Scholar
  16. 16.
    Stichel T, Hecht B, Houbertz R, Sextl G (2010) J Laser Micro Nanoeng 5:209–212Google Scholar
  17. 17.
    Levine IN (2013) Quantum Chemistry, 7th ed. Pearson Education International, Upper Saddle RiverGoogle Scholar
  18. 18.
    van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) J Phys Chem A 105:9396–9409Google Scholar
  19. 19.
    Stuart SJ, Tutein AB, Harrison JA (2000) J Chem Phys 112:6472–6486Google Scholar
  20. 20.
    Li C, Strachan A (2015) J Polym Sci Part B Polym Phys 53:103–122Google Scholar
  21. 21.
    Lu X, Wang X, Li Q, Huang X, Han S, Wang G (2015) Polym Degrad Stab 114:72–80Google Scholar
  22. 22.
    Chenoweth K, van Duin ACT, Goddard WA (2008) J Phys Chem A 112:1040–1053Google Scholar
  23. 23.
    Chenoweth K, Cheung S, van Duin ACT, Goddard WA, Kober EM (2005) J Am Chem Soc 127:7192–7202Google Scholar
  24. 24.
    Liu X, Li X, Liu J, Wang Z, Kong B, Gong X, Yang X, Lin W, Guo L (2014) Polym Degrad Stab 104:62–70Google Scholar
  25. 25.
    Deetz JD, Faller R (2014) J Phys Chem B 118:10966–10978Google Scholar
  26. 26.
    Deetz JD, Faller R (2015) Soft Matter 11:6780–6789Google Scholar
  27. 27.
    Deetz JD, Faller R (2015) J Non Cryst Solids 429:183–189Google Scholar
  28. 28.
    Fessel S, Schneider AM, Steenhusen S, Houbertz R, Behrens P (2012) J Sol-Gel Sci Technol 63:356–365Google Scholar
  29. 29.
    Schottner G (2001) Chem Mater 13:3422–3435Google Scholar
  30. 30.
    Buestrich R, Kahlenberg F, Popall M, Dannberg P, Müller-Fiedler R, Rösch O (2001) J Sol-Gel Sci Technol 20:181–186Google Scholar
  31. 31.
    Merker RL, Scott MJ (1961) J Org Chem 26:5180–5182Google Scholar
  32. 32.
    Sheldrick GM (2008) Acta Crystallogr Sect A Found Crystallogr 64:112–122Google Scholar
  33. 33.
    Accelrys Software Inc. (2014) Dassault Systèmes. Materials Studio 7.0. California, USA.Google Scholar
  34. 34.
    Sun H (1998) J Phys Chem B 102:7338–7364Google Scholar
  35. 35.
    Sun H, Rigby D (1997) Spectrochim Acta Part A Mol Biomol Spectrosc 53:1301–1323Google Scholar
  36. 36.
    Rigby D (2004) Fluid Phase Equilib 217:77–87Google Scholar
  37. 37.
    Song X, Sun Y, Wu X, Zeng F (2011) Comput Mater Sci 50:3282–3289Google Scholar
  38. 38.
    Bizet S, Galy J, Gérard J-F (2006) Polymer 47:8219–8227Google Scholar
  39. 39.
    Bharadwaj RK (2000) Polymer 41:7209–7221Google Scholar
  40. 40.
    Maple JR, Hwang M-J, Stockfisch TP, Dinur U, Waldman M, Ewig CS, Hagler AT (1994) J Comput Chem 15:162–182Google Scholar
  41. 41.
    Hwang MJ, Stockfisch TP, Hagler AT (1994) J Am Chem Soc 116:2515–2525Google Scholar
  42. 42.
    Ewald PP (1921) Ann Phys 369:253–287Google Scholar
  43. 43.
    Shiu S-C, Tsai J-L (2014) Compos Part B Eng 56:691–697Google Scholar
  44. 44.
    Wang Z, Lv Q, Chen S, Li C, Sun S, Hu S (2015) Mol Simul 41:1515–1527Google Scholar
  45. 45.
    Sul J-H, Gangadhara Prusty B, Kelly DW (2015) Adv Manuf Polym Compos Sci 1:94–104Google Scholar
  46. 46.
    Watt SW, Chisholm JA, Jones W, Motherwell S (2004) J Chem Phys 121:9565–9573Google Scholar
  47. 47.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690Google Scholar
  48. 48.
    Nicholas JB, Winans RE, Harrison RJ, Iton LE, Curtiss LA, Hopfinger AJ (1992) J Phys Chem 96:7958–7965Google Scholar
  49. 49.
    Luke BT (1993) J Phys Chem 97:7505–7510Google Scholar
  50. 50.
    Bär MR, Sauer J (1994) Chem Phys Lett 226:405–412Google Scholar
  51. 51.
    Sun H, Ren P, Fried JR (1998) Comput Theor Polym Sci 8:229–246Google Scholar
  52. 52.
    Merker RL, Noll JE (1956) J Org Chem 21:1537–1539Google Scholar
  53. 53.
    Andrianov KA, Dabagova AK, Syrtsova ZS (1962) Bull Acad Sci USSR Div Chem Sci 11:1487–1491Google Scholar
  54. 54.
    Larsen GS, Lin P, Hart KE, Colina CM (2011) Macromolecules 44:6944–6951Google Scholar
  55. 55.
    Lavigueur C, Zhu XX (2012) RSC Adv 2:59–63Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Thomas S. Asche
    • 1
  • Peter Behrens
    • 1
  • Andreas M. Schneider
    • 1
    Email author
  1. 1.Institut für Anorganische ChemieLeibniz Universität HannoverHannoverGermany

Personalised recommendations