Journal of Sol-Gel Science and Technology

, Volume 80, Issue 2, pp 396–401 | Cite as

Green synthesis of hausmannite nanocrystals and their photocatalytic dye degradation and antimicrobial studies

  • K. Mohan Kumar
  • S. GodavarthiEmail author
  • E. Vázquez Vélez
  • M. Casales Díaz
  • M. Mahendhiran
  • A. Hernandez-Eligio
  • M. G. Syamala Rao
  • L. Martinez Gomez
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


A simple and green route to synthesize hausmannite nanocrystals using tannic acid was presented in this work. Formation mechanism of Mn3O4 nanoparticles (NP’s) was illustrated. The Mn3O4 NP’s were characterized by X-ray powder diffraction studies (XRPD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Fourier transformed infrared spectroscopy (FT-IR), and high-resolution transmission electron microscopy. XRPD confirms the formation of Mn3O4 NP’s and the observation of peak at 632.81 cm−1 in Raman spectroscopy confirms the same. Mixed valency of Mn3O4 was evidenced from XPS. Also surface functionalization was evidenced by FT-IR and XPS measurements. The obtained NP’s are effective in degradation of tested organic pollutants methyl orange and bromophenol blue. About 90 % degradation in methyl orange and 80 % degradation in bromophenol blue were observed within 10 min using Mn3O4 NP’s. These NP’s show good antimicrobial activity against both tested gram-positive (Bacillus subtilis 168) and gram-negative (Escherichia coli K12) bacterias. The antibacterial activity of obtained Mn3O4 Np’s was found high in E. coli K12 than in B. subtilis 168.

Graphical Abstract


Green route Hausmannite Nanocrystals Functionalization FT-IR XPS 



K. Mohan Kumar, S. Godavarthi, and M. Mahendhiran are thankful to the postdoctoral scholarship from Direccion General de Asuntos del Personal Academico—Universidad Nacional Autonoma de Mexico (DGAPA-UNAM). We are thankful to Dr. Ramón Peña Sierra from Cinvestav-IPN, for his support in Raman spectral analysis.

Supplementary material

10971_2016_4136_MOESM1_ESM.doc (458 kb)
Supplementary material 1 (DOC 459 kb)


  1. 1.
    Moggridge GD, Rayment T, Lambert RM (1992) J Catal 134:242–252CrossRefGoogle Scholar
  2. 2.
    Sanchez L, Farcy J, Tirado J (1996) J Mater Chem 6:37–39CrossRefGoogle Scholar
  3. 3.
    Wang N, Guo L, He L, Cao X, Chen C, Wang R, Yang S (2007) Small 3:606–610CrossRefGoogle Scholar
  4. 4.
    Li Y, Tan H, Yang X-Y, Goris B, Verbeeck J, Bals S, Colson P, Cloots R, Van Tendeloo G, Su B-L (2011) Small 7:475–483CrossRefGoogle Scholar
  5. 5.
    Davar F, Salavati-Niasari M, Mir N, Saberyan K, Monemzadeh M, Ahmadi E (2010) Polyhedron 29:1747–1753CrossRefGoogle Scholar
  6. 6.
    Giovannelli F, Autret-Lambert C, Mathieu C, Chartier T, Delorme F, Seron A (2012) J Solid State Chem 192:109–112CrossRefGoogle Scholar
  7. 7.
    Apte SK, Naik SD, Sonawane RS, Kale BB, Pavaskar N, Mandale AB, Das BK (2006) Mater Res Bull 41:647–654CrossRefGoogle Scholar
  8. 8.
    Gunalan S, Sivaraj R, Rajendran V (2012) Prog Nat Sci Mater Int 22:693–700CrossRefGoogle Scholar
  9. 9.
    Suresh D, Nethravathi PC, Udayabhanu H, Rajanaika H, Nagabhushana H, Sharma SC (2015) Mater Sci Semicond Proc 31:446–454CrossRefGoogle Scholar
  10. 10.
    Sharma JK, Srivastava P, Ameen S, Shaheer Akhtar M, Singh G, Yadava S (2016) J Colloid Interface Sci 472:220–228CrossRefGoogle Scholar
  11. 11.
    Gülçin İ, Huyut Z, Elmastaş M, Aboul-Enein HY (2010) Arab J Chem 3:43–53CrossRefGoogle Scholar
  12. 12.
    Sivaraman SK, Elango I, Kumar S, Santhanam V (2009) Curr Sci 97:1055–1059Google Scholar
  13. 13.
    Kausalya M, Narasimha Rao GM (2015) Antimicrobial activity of marine algae. J Algal Biomass Util 6:78–87Google Scholar
  14. 14.
    Kavangh F (1992) Analytical microbiology-II. Academic Press, New York, p 241Google Scholar
  15. 15.
    Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Oxford Pergamon Press, Oxford, p 286Google Scholar
  16. 16.
    Song R, Feng S, Wang H, Hou C (2013) J Solid State Chem 202:57–60CrossRefGoogle Scholar
  17. 17.
    Zuo J, Xu C, Liu Y, Qian Y (1998) Nanostruct Mater 10:1331–1335CrossRefGoogle Scholar
  18. 18.
    Jin G, Xiao X, Li S, Zhao K, Wu Y, Sun D, Wang F (2015) Electrochim Acta 178:689–698CrossRefGoogle Scholar
  19. 19.
    Yin S, Wang X, Mou Z, Wu Y, Huang H, Zhu M, Du Y, Yang P (2014) Phys Chem Chem Phys 16:11289–11296CrossRefGoogle Scholar
  20. 20.
    Min Y, Zhang K, Chen Y, Zhang Y (2011) Chem Eng J 175:76–83CrossRefGoogle Scholar
  21. 21.
    Makhal A, Sarkar S, Pal SK (2012) Inorg Chem 51:10203–10210CrossRefGoogle Scholar
  22. 22.
    Jain N, Bhargava A, Panwar J (2014) Chem Eng J 243:549–555CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • K. Mohan Kumar
    • 1
    • 2
  • S. Godavarthi
    • 1
    Email author
  • E. Vázquez Vélez
    • 1
  • M. Casales Díaz
    • 1
  • M. Mahendhiran
    • 3
  • A. Hernandez-Eligio
    • 3
  • M. G. Syamala Rao
    • 4
  • L. Martinez Gomez
    • 1
  1. 1.Instituto de Ciencias Fisicas Universidad Nacional Autonoma de MexicoCuernavacaMexico
  2. 2.Department of ChemistryMadanapalle Institute of Technology and ScienceMadanapalleIndia
  3. 3.Departamento de Bioingenieria Celular y BiocatalisisInstituto de Biotecnologia UNAMCuernavacaMexico
  4. 4.Cinvestav, QueretaroQueretaroMexico

Personalised recommendations