Journal of Sol-Gel Science and Technology

, Volume 81, Issue 1, pp 95–104 | Cite as

Ethanol–water co-condensation into hydrophobic mesoporous thin films: example of a photonic ethanol vapor sensor in humid environment

  • Mickael Boudot
  • Andrea Cattoni
  • David Grosso
  • Marco Faustini
Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications


In this work, we report a new generation of sol–gel photonic vapor sensor based on water-repellent methyl-functionalized mesoporous silica thin films for the detection of alcohol vapors. Relative humidity, generally accountable for sensor performance deterioration, was demonstrated as a key parameter to detect and enhance sensor sensitivity concerning ethanol. The ethanol-assisted water vapor capillary condensation into hydrophobic mesopores was observed and investigated as an innovative sensing mechanism. We showed that water condensation was triggered by the surfactant-like behavior of alcohol molecules whose alkyl moieties preferentially interact with the hydrophobic walls and reversibly switch the surface energy from hydrophobic to hydrophilic. Influence of the ethanol and water pressure conditions for which the capillary condensation occurs were studied by in situ ellipsometry. This study revealed a synergic mechanism of co-adsorption where the minimum ethanol concentration allowing water capillary adsorption decreases when humidity increases. Nanopatterned diffraction gratings films, fabricated via a nanoimprinting process, were demonstrated to be efficient transductor to transform the capillary-induced nanoscale variations of refractive index of the porous materials into optical signals easily measurable by conventional camera. Sensing results exhibited an ethanol vapor pressure threshold limit of detection of P/P 0 EtOH  = 0.07 at 100 % relative humidity and typical response and regeneration times are below one minute.

Graphical Abstract


Hydro-alcoholic capillary co-condensation Sol–gel nanoimprinting Optical sensor Ethanol sensing 



We are grateful for funding provided by CIFRE fund granted by ANRT and the AVATAR project which is supported by Polyrise SAS, and DGA. M. Boudot et al. thanks D. Montero for SEMFEG microscopy conducted on a Hitachi Su-70 + Oxford XMax facilited by the IMPC (FR2482) financially supported by the C’Nano projects of the Region Ile-de-France.


  1. 1.
    Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367. doi: 10.1016/j.envpol.2007.06.012 CrossRefGoogle Scholar
  2. 2.
    Bruce N, Perez-Padilla R, Albalak R (2000) Indoor air pollution in developing countries: a major environmental and public health challenge. Bull World Health Organ 78:1078–1092. doi: 10.1590/S0042-96862000000900004 Google Scholar
  3. 3.
    Della Gaspera E, Guglielmi M, Martucci A (2015) Sol–gel for gas sensing applications. Sol–gel handbook. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1173–1206Google Scholar
  4. 4.
    Yoon HJ, Jun DH, Yang JH et al (2011) Carbon dioxide gas sensor using a graphene sheet. Sens Actuators B Chem 157:310–313. doi: 10.1016/j.snb.2011.03.035 CrossRefGoogle Scholar
  5. 5.
    Kong J (2000) Nanotube molecular wires as chemical sensors. Science 287(80):622–625. doi: 10.1126/science.287.5453.622 CrossRefGoogle Scholar
  6. 6.
    Eranna G, Joshi BC, Runthala DP, Gupta RP (2004) Oxide materials for development of integrated gas sensors—a comprehensive review. Crit Rev Solid State Mater Sci 29:111–188. doi: 10.1080/10408430490888977 CrossRefGoogle Scholar
  7. 7.
    Brigo L, Cittadini M, Artiglia L et al (2013) Xylene sensing properties of aryl-bridged polysilsesquioxane thin films coupled to gold nanoparticles. J Mater Chem C 1:4252. doi: 10.1039/c3tc30426d CrossRefGoogle Scholar
  8. 8.
    Wang X-D, Wolfbeis OS (2013) Fiber-optic chemical sensors and biosensors (2008–2012). Anal Chem 85:487–508. doi: 10.1021/ac303159b CrossRefGoogle Scholar
  9. 9.
    Gallegos D, Long KD, Yu H et al (2013) Label-free biodetection using a smartphone. Lab Chip 13:2124. doi: 10.1039/c3lc40991k CrossRefGoogle Scholar
  10. 10.
    Snik F, Rietjens JHH, Apituley A et al (2014) Mapping atmospheric aerosols with a citizen science network of smartphone spectropolarimeters. Geophys Res Lett 41:7351–7358. doi: 10.1002/2014GL061462 CrossRefGoogle Scholar
  11. 11.
    Jeronimo P, Araujo A, Conceicaobsmmontenegro M (2007) Optical sensors and biosensors based on sol–gel films. Talanta 72:13–27. doi: 10.1016/j.talanta.2006.09.029 CrossRefGoogle Scholar
  12. 12.
    McDonagh C, MacCraith BD, McEvoy AK (1998) Tailoring of sol–gel films for optical sensing of oxygen in gas and aqueous phase. Anal Chem 70:45–50. doi: 10.1021/ac970461b CrossRefGoogle Scholar
  13. 13.
    Chu C-S, Lo Y-L (2009) Highly sensitive and linear optical fiber carbon dioxide sensor based on sol–gel matrix doped with silica particles and HPTS. Sens Actuators B Chem 143:205–210. doi: 10.1016/j.snb.2009.09.019 CrossRefGoogle Scholar
  14. 14.
    Hasani M, Coto García AM, Costa-Fernández JM, Sanz-Medel A (2010) Sol–gels doped with polymer-coated ZnS/CdSe quantum dots for the detection of organic vapors. Sens Actuators B Chem 144:198–202. doi: 10.1016/j.snb.2009.10.066 CrossRefGoogle Scholar
  15. 15.
    Abdelghani A, Chovelon JM, Jaffrezic-Renault N et al (1997) Optical fibre sensor coated with porous silica layers for gas and chemical vapour detection. Sens Actuators B Chem 44:495–498. doi: 10.1016/S0925-4005(97)00172-X CrossRefGoogle Scholar
  16. 16.
    Echeverría JC, de Vicente P, Estella J, Garrido JJ (2012) A fiber-optic sensor to detect volatile organic compounds based on a porous silica xerogel film. Talanta 99:433–440. doi: 10.1016/j.talanta.2012.06.007 CrossRefGoogle Scholar
  17. 17.
    Yu C-C, Chen H-L (2015) Nanoimprint technology for patterning functional materials and its applications. Microelectron Eng 132:98–119. doi: 10.1016/j.mee.2014.10.015 CrossRefGoogle Scholar
  18. 18.
    Dalstein O, Ceratti DR, Boissière C et al (2015) Nanoimprinted, submicrometric, MOF-based 2D photonic structures: toward easy selective vapors sensing by a smartphone camera. Adv Funct Mater. doi: 10.1002/adfm.201503016 Google Scholar
  19. 19.
    Cattoni A, Cambril E, Decanini D et al (2010) Soft UV-NIL at 20 nm scale using flexible bi-layer stamp casted on HSQ master mold. Microelectron Eng 87:1015–1018. doi: 10.1016/j.mee.2009.11.106 CrossRefGoogle Scholar
  20. 20.
    Boudot M, Ceratti DR, Faustini M et al (2014) Alcohol-assisted water condensation and stabilization into hydrophobic mesoporosity. J Phys Chem C 118:23907–23917. doi: 10.1021/jp508372d CrossRefGoogle Scholar
  21. 21.
    Boudot M, Gaud V, Louarn M et al (2014) Sol–gel based hydrophobic antireflective coatings on organic substrates: a detailed investigation of ammonia vapor treatment (AVT). Chem Mater 26:1822–1833. doi: 10.1021/cm403787v CrossRefGoogle Scholar
  22. 22.
    Cagnol F, Grosso D, Sanchez C (2004) A general one-pot process leading to highly functionalised ordered mesoporous silica films. Chem Commun (Camb) 15:1742–1743. doi: 10.1039/b403753g CrossRefGoogle Scholar
  23. 23.
    Faustini M, Nicole L, Boissière C et al (2010) Hydrophobic, antireflective, self-cleaning, and antifogging sol–gel coatings: an example of multifunctional nanostructured materials for photovoltaic cells. Chem Mater 22:4406–4413. doi: 10.1021/cm100937e CrossRefGoogle Scholar
  24. 24.
    Vayer M, Nguyen TH, Grosso D et al (2011) Characterization of nanoporous polystyrene thin films by environmental ellipsometric porosimetry. Macromolecules 44:8892–8897. doi: 10.1021/ma201497z CrossRefGoogle Scholar
  25. 25.
    Gregg SJ, Sing KSW (1991) Adsorption, surface area, and porosity. Academic Press, LondonGoogle Scholar
  26. 26.
    Niklasson GA, Granqvist CG, Hunderi O (1981) Effective medium models for the optical properties of inhomogeneous materials. Appl Opt 20:26–30CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute for Materials Chemistry and EngineeringKyushu UniversityKasugaJapan
  2. 2.Laboratoire de Photonique et de Nanostructure, CNRSUniversité Paris-SaclayMarcoussisFrance
  3. 3.UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574Sorbonne UniversitésParisFrance

Personalised recommendations