Journal of Sol-Gel Science and Technology

, Volume 79, Issue 2, pp 270–278 | Cite as

Lithium insertion properties of mesoporous nanocrystalline TiO2 and TiO2–V2O5 microspheres prepared by non-hydrolytic sol–gel

  • A. M. Escamilla-Pérez
  • N. LouvainEmail author
  • M. Kaschowitz
  • S. Freunberger
  • O. Fontaine
  • B. Boury
  • N. Brun
  • P. H. MutinEmail author
Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)


Mesoporous nanocrystalline TiO2 and TiO2–V2O5 microspheres were prepared by non-hydrolytic sol–gel from TiCl4, VOCl3, and iPr2O at 110 °C without any solvent or additives. The samples were characterized by elemental analysis, X-ray diffraction, Raman spectroscopy, scanning electron microscopy, nitrogen physisorption, and impedance measurements. At low vanadium loadings, only TiO2 anatase was detected, and V2O5 scherbinaite was also detected at high vanadium loadings. The texture of the samples depended on the V loading, but all the samples appeared built of primary nanoparticles (≈10–20 nm in size) that aggregate to form mesoporous micron-sized spheres. The lithium insertion properties of these materials were evaluated by galvanostatic measurements taken using coin-type cells, in view of their application as electrode for rechargeable Li-ion batteries. The mesoporous TiO2 microspheres showed good performances, with a specific reversible capacity of 145 and 128 mAh g−1 at C/2 and C, respectively (C = 335.6 mA g−1), good coulombic efficiency, and a moderate capacity fade (6 %) from the 2nd to the 20th cycle at C/20. Although the addition of V effectively increased the electronic conductivity of the powders, the specific reversible capacity and cycling performances of the TiO2–V2O5 samples were only minimally improved for a 5 at% V loading and were lower at higher V loading.

Graphical Abstract


Non-hydrolytic sol–gel Mesoporous xerogel Titania Vanadia Lithium battery 



This work was supported by the “Centre National de la Recherche Scientifique” and the University of Montpellier, and through a PhD grant of the “Consejo Nacional de Ciencia y Tecnología” in Mexico.

Supplementary material

10971_2016_4037_MOESM1_ESM.docx (229 kb)
Supplementary material 1 (DOCX 229 kb)


  1. 1.
    Mutin PH, Vioux A (2009) Nonhydrolytic processing of oxide-based materials: simple routes to control homogeneity, morphology, and nanostructure. Chem Mater 21:582–596CrossRefGoogle Scholar
  2. 2.
    Mutin PH, Vioux A (2013) Recent advances in the synthesis of inorganic materials via non-hydrolytic condensation and related low-temperature routes. J Mater Chem A 1:11504–11512CrossRefGoogle Scholar
  3. 3.
    Pinna N, Niederberger M (2008) Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew Chem Int Ed 47:5292–5304CrossRefGoogle Scholar
  4. 4.
    Bilecka I, Niederberger M (2010) New developments in the nonaqueous and/or non-hydrolytic sol-gel synthesis of inorganic nanoparticles. Electrochim Acta 55:7717–7725CrossRefGoogle Scholar
  5. 5.
    Debecker DP, Hulea V, Mutin PH (2013) Mesoporous mixed oxide catalysts via non-hydrolytic sol-gel: a review. Appl Catal A 451:192–206CrossRefGoogle Scholar
  6. 6.
    Bilecka I, Hintennach A, Rossell MD, Xie D, Novak P, Niederberger M (2011) Microwave-assisted solution synthesis of doped LiFePO4 with high specific charge and outstanding cycling performance. J Mater Chem 21:5881–5890CrossRefGoogle Scholar
  7. 7.
    Yu S-H, Pucci A, Herntrich T, Willinger M-G, Baek S-H, Sung Y-E, Pinna N (2011) Surfactant-free nonaqueous synthesis of lithium titanium oxide (LTO) nanostructures for lithium ion battery applications. J Mater Chem 21:806–810CrossRefGoogle Scholar
  8. 8.
    Song T, Paik U (2016) TiO2 as an active or supplemental material for lithium batteries. J Mater Chem A 4:14–31CrossRefGoogle Scholar
  9. 9.
    Sudant G, Baudrin E, Larcher D, Tarascon J-M (2005) Electrochemical lithium reactivity with nanotextured anatase-type TiO2. J Mater Chem 15:1263–1269Google Scholar
  10. 10.
    Guo YG, Hu YS, Sigle W, Maier J (2007) Superior electrode performance of nanostructured mesoporous TiO2 (Anatase) through efficient hierarchical mixed conducting networks. Adv Mater (Weinheim, Ger) 19:2087–2091CrossRefGoogle Scholar
  11. 11.
    Sondergaard M, Shen Y, Mamakhel A, Marinaro M, Wohlfahrt-Mehrens M, Wonsyld K, Dahl S, Iversen BB (2015) TiO2 nanoparticles for Li-ion battery anodes: mitigation of growth and irreversible capacity using LiOH and NaOH. Chem Mater 27:119–126CrossRefGoogle Scholar
  12. 12.
    Maier J (2005) Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater 4:805–815CrossRefGoogle Scholar
  13. 13.
    Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRefGoogle Scholar
  14. 14.
    Guo YG, Hu YS, Maier J (2006) Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. Chem Commun 2006:2783–2785CrossRefGoogle Scholar
  15. 15.
    Deng D, Kim MG, Lee JY, Cho J (2009) Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci 2:818–837CrossRefGoogle Scholar
  16. 16.
    Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K-Q, Al-Deyab SS, Lai Y (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A. doi: 10.1039/C5TA09323F Google Scholar
  17. 17.
    Yan X, Wang Z, He M, Hou Z, Xia T, Liu G, Chen X (2015) Titania nanomaterial as anode for lithium-ion rechargeable batteries. Energy Technol (Weinheim, Ger) 3:801–814Google Scholar
  18. 18.
    Zhang Y, Jiang Z, Huang J, Lim LY, Li W, Deng J, Gong D, Tang Y, Lai Y, Chen Z (2015) Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Adv 5:79479–79510CrossRefGoogle Scholar
  19. 19.
    Chen JS, Archer LA, Wen Lou X (2011) SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J Mater Chem 21:9912–9924CrossRefGoogle Scholar
  20. 20.
    Anh LT, Rai AK, Thi TV, Gim J, Kim S, Shin E-C, Lee J-S, Kim J (2013) Improving the electrochemical performance of anatase titanium dioxide by vanadium doping as an anode material for lithium-ion batteries. J Power Sources 243:891–898CrossRefGoogle Scholar
  21. 21.
    Fehse M, Cavaliere S, Lippens PE, Savych I, Iadecola A, Monconduit L, Jones DJ, Roziere J, Fischer F, Tessier C, Stievano L (2013) Nb-Doped TiO2 nanofibers for lithium ion batteries. J Phys Chem C 117:13827–13835CrossRefGoogle Scholar
  22. 22.
    Popa AF, Mutin PH, Vioux A, Delahay G, Coq B (2004) Novel non-hydrolytic synthesis of a V2O5–TiO2 xerogel for the selective catalytic reduction of NOx by ammonia. Chem Commun: 2214–2215Google Scholar
  23. 23.
    Debecker DP, Bouchmella K, Delaigle R, Eloy P, Poleunis C, Bertrand P, Gaigneaux EM, Mutin PH (2010) One-step non-hydrolytic sol-gel preparation of efficient V2O5–TiO2 catalysts for VOC total oxidation. Appl Catal B 94:38–45CrossRefGoogle Scholar
  24. 24.
    Ohsaka T, Izum F, Fujiki Y (1978) Raman spectrum of anatase, TiO2. J Raman Spectrosc 7:321–324CrossRefGoogle Scholar
  25. 25.
    Santangelo S, Messina G, Faggio G, Willinger MG, Pinna N, Donato A, Arena A, Donato N, Neri G (2010) Micro-Raman investigation of vanadium-oxide coated tubular carbon nanofibers for gas-sensing applications. Diamond Relat Mater 19:590–594CrossRefGoogle Scholar
  26. 26.
    Sidebottom DL (2009) Colloquium: understanding ion motion in disordered solids from impedance spectroscopy scaling. Rev Modern Phys 81:999–1014CrossRefGoogle Scholar
  27. 27.
    Shin J-Y, Samuelis D, Maier J (2011) Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena. Adv Funct Mater 21:3464–3472CrossRefGoogle Scholar
  28. 28.
    Wagemaker M, Borghols WJH, Mulder FM (2007) Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J Am Chem Soc 129:4323–4327CrossRefGoogle Scholar
  29. 29.
    Lafont U, Carta D, Mountjoy G, Chadwick AV, Kelder EM (2009) In situ structural changes upon electrochemical lithium insertion in nanosized anatase TiO2. J Phys Chem C 114:1372–1378CrossRefGoogle Scholar
  30. 30.
    Reddy MV, Sharma N, Adams S, Rao RP, Peterson VK, Chowdari BVR (2015) Evaluation of undoped and M-doped TiO2, where M = Sn, Fe, Ni/Nb, Zr, V, and Mn, for lithium-ion battery applications prepared by the molten-salt method. RSC Adv 5:29535–29544CrossRefGoogle Scholar
  31. 31.
    Wang J, Zhou Y, Hu Y, O’Hayre R, Shao Z (2011) Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium–ion batteries. J Phys Chem C 115:2529–2536CrossRefGoogle Scholar
  32. 32.
    Chen JS, Tan YL, Li CM, Cheah YL, Luan D, Madhavi S, Boey FYC, Archer LA, Lou XW (2010) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132:6124–6130CrossRefGoogle Scholar
  33. 33.
    Wang J, Bai Y, Wu M, Yin J, Zhang WF (2009) Preparation and electrochemical properties of TiO2 hollow spheres as an anode material for lithium-ion batteries. J Power Sources 191:614–618CrossRefGoogle Scholar
  34. 34.
    Ye J, Liu W, Cai J, Chen S, Zhao X, Zhou H, Qi L (2011) Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J Am Chem Soc 133:933–940CrossRefGoogle Scholar
  35. 35.
    Qiu Y, Yan K, Yang S, Jin L, Deng H, Li W (2010) Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride−graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. ACS Nano 4:6515–6526CrossRefGoogle Scholar
  36. 36.
    Bao S-J, Bao Q-L, Li C-M, Zhi-Li D (2007) Novel porous anatase TiO2 nanorods and their high lithium electroactivity. Electrochem Commun 9:1233–1238CrossRefGoogle Scholar
  37. 37.
    Xu J, Jia C, Cao B, Zhang WF (2007) Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries. Electrochim Acta 52:8044–8047CrossRefGoogle Scholar
  38. 38.
    Wu QL, Li J, Deshpande RD, Subramanian N, Rankin SE, Yang F, Cheng Y-T (2012) Aligned TiO2 nanotube arrays as durable lithium-ion battery negative electrodes. J Phys Chem C 116:18669–18677CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. M. Escamilla-Pérez
    • 1
  • N. Louvain
    • 1
    • 2
    Email author
  • M. Kaschowitz
    • 3
  • S. Freunberger
    • 3
  • O. Fontaine
    • 1
    • 2
  • B. Boury
    • 1
  • N. Brun
    • 1
  • P. H. Mutin
    • 1
    Email author
  1. 1.Institut Charles Gerhardt Montpellier, UMR 5253Université Montpellier 2Montpellier Cedex 5France
  2. 2.Réseau sur le Stockage Electrochimique de l’Energie (RS2E)AmiensFrance
  3. 3.Institute for Chemistry and Technology of MaterialsGraz University of TechnologyGrazAustria

Personalised recommendations