Journal of Sol-Gel Science and Technology

, Volume 79, Issue 2, pp 308–318 | Cite as

Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silica-biopolymer hybrid aerogels: from laboratory to pilot scale

  • Matthias M. KoebelEmail author
  • Lukas Huber
  • Shanyu Zhao
  • Wim J. Malfait
Original Paper: Sol-gel and hybrid materials for energy, environment and building applications


Silica aerogel superinsulation products have a tremendous growth potential, particularly for industrial and pipe insulation. However, the high production cost and the poor mechanical properties prevent the adoption of silica aerogel superinsulation outside of the established niche markets. In this paper, we address these two barriers. We analyze the solvent use of current production processes for ambient-dried silica aerogel and derive a minimal solvent process that approaches the theoretical minimum of one volume of solvent for one volume of aerogel. We apply this process at the pilot scale and produce aerogel granulate with a thermal conductivity of 17.4 mW/(m·K). A review of the different mechanical reinforcement strategies reveals that strengthening typically comes with a penalty in thermal conductivity. In contrast, we highlight some of our recent work on hybrid polysaccharide (cellulose, pectin)—silica aerogels, where the mechanical reinforcement did not significantly increase thermal conductivity as a promising avenue for more robust silica-based hybrid aerogel materials.

Graphical Abstract


Aerogel Thermal insulation Sol–gel Scale-up Silica-biopolymer hybrids 


  1. 1.
    Koebel M, Rigacci A, Achard P (2011) Aerogels for superinsulation: a synoptic view. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York, pp 607–633CrossRefGoogle Scholar
  2. 2.
    Koebel M, Rigacci A, Achard P (2012) J Sol–Gel Sci Technol 63:315–339CrossRefGoogle Scholar
  3. 3.
    Maleki H, Durães L, Portugal A (2014) J Non-Cryst Solids 385:55–74CrossRefGoogle Scholar
  4. 4.
    Wong JCH, Kaymak H, Brunner S, Koebel MM (2014) Microporous Mesoporous Mater 183:23–29CrossRefGoogle Scholar
  5. 5.
    Kistler SS (1932) J Phys Chem 36:52–64CrossRefGoogle Scholar
  6. 6.
    Kistler SS (1931) Nature 127:741CrossRefGoogle Scholar
  7. 7.
    Flörke OW, Graetsch HA, Brunk F, Benda L, Paschen S, Bergna HE, Roberts WO, Welsh WA, Libanati C, Ettlinger M, Kerner D, Maier M, Meon W, Schmoll R, Gies H, Schiffmann D (2000) Silica, Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, BerlinGoogle Scholar
  8. 8.
    Nicolaon GA, Teichner S (1968) J Bull Soc Chim Fr 1900:1906Google Scholar
  9. 9.
    Schwertfeger F, Frank D, Schmidt M (1998) J Non-Cryst Solids 225:24–29CrossRefGoogle Scholar
  10. 10.
    Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, New YorkCrossRefGoogle Scholar
  11. 11.
    Hüsing N, Schubert U (2008) Organically modified monolithic silica aerogels. In: Schubert U, Hüsing N, Laine R (eds) Materials syntheses. Springer, Vienna, pp 39–45CrossRefGoogle Scholar
  12. 12.
    Schwertfeger F, Emmerling A, Gross J, Schubert U, Fricke J (1994) Organically modified silica aerogels. In: Attia Y (ed) Sol–gel processing and applications. Plenum press, New York, pp 343–347CrossRefGoogle Scholar
  13. 13.
    Zhao S, Manic MS, Ruiz-Gonzalez F, Koebel MM (2015) Aerogels, the sol–gel handbook. Wiley-VCH Verlag GmbH & Co. KGaA, Germany, pp 519–574Google Scholar
  14. 14.
    Malfait WJ, Zhao S, Verel R, Iswar S, Rentsch D, Fener R, Zhang Y, Milow B, Koebel MM (2015) Chem Mater. doi: 10.1021/acs.chemmater.1025b02801 Google Scholar
  15. 15.
    Schwertfeger F (1998)Process for producing organically modified aerogel. WO1998005591 A1Google Scholar
  16. 16.
    Koebel M, Zhao S, Brunner S, Simmen C (2015) Process for the production of an aerogel material. WO2015014813 A1Google Scholar
  17. 17.
    Prakash S, Brinker J, Hurd A, Rao SM (1995) Nature 374:439–443CrossRefGoogle Scholar
  18. 18.
    Rao AV, Kulkarni MM, Amalnerkar DP, Seth T (2006) Appl Surf Sci 206:262–270CrossRefGoogle Scholar
  19. 19.
    Malfait WJ, Verel R, Koebel MM (2014) J Phys Chem C 118:25545–25554CrossRefGoogle Scholar
  20. 20.
    Huber L, Zhao S, Koebel MM (2015) In Cost-effective aerogel production by one-pot process, International conference future building & districts sustainability from nano to urban scale, Lausanne, Switzerland, Sept 9–11, 2015.
  21. 21.
    Katti A, Shimpi N, Roy S, Lu H, Fabrizio EF, Dass A, Capadona LA, Leventis N (2005) Chem Mater 18:285–296CrossRefGoogle Scholar
  22. 22.
    Yin W, Venkitachalam S, Jarrett E, Staggs S, Leventis N, Lu H, Rubenstein D (2010) J Biomed Mater Res Part A 92:1431–1439Google Scholar
  23. 23.
    Nguyen BN, Meador MAB, Medoro A, Arendt V, Randall J, McCorkle L, Shonkwiler B (2010) ACS Appl. Mater Interfaces 2:1430–1443CrossRefGoogle Scholar
  24. 24.
    Duan Y (2012) Fundamental studies on polymer and organic-inorganic hybrid nanoparticles reinforced silica aerogels, Polymer Engineering, The University of Akron, Ann Arbor, 2012, p 257.
  25. 25.
    Yuan B, Ding S, Wang D, Wang G, Li H (2012) Mat Lett 75:204–206CrossRefGoogle Scholar
  26. 26.
    Pekala RW (1989) J Mater Sci 24:3221–3227CrossRefGoogle Scholar
  27. 27.
    Rätzsch M, Bucka H, Ivanchev S, Pavlyuchenko V, Leitner P, Primachenko ON (2004) Macromol Symp 217:431–443CrossRefGoogle Scholar
  28. 28.
    Leventis N (2007) Acc Chem Res 40:874–884CrossRefGoogle Scholar
  29. 29.
    Biesmans G, Randall D, Francais E, Perrut M (1998) J Non-Cryst Solids 225:36–40CrossRefGoogle Scholar
  30. 30.
    Rigacci A, Marechal JC, Repoux M, Moreno M, Achard P (2004) J Non-Cryst Solids 350:372–378CrossRefGoogle Scholar
  31. 31.
    Chidambareswarapattar C, McCarver PM, Luo H, Lu H, Sotiriou-Leventis C, Leventis N (2013) Chem Mater 25:3205–3224CrossRefGoogle Scholar
  32. 32.
    Li L, Yalcin B, Nguyen BN, Meador MAB, Cakmak M (2009) ACS Appl Mater Interfaces 1:2491–2501CrossRefGoogle Scholar
  33. 33.
    Diascorn N, Calas S, Sallée H, Achard P, Rigacci A (2015) J Supercrit Fluids. doi: 10.1016/j.supflu.2015.1005.1012
  34. 34.
    Weigold L, Mohite DP, Mahadik-Khanolkar S, Leventis N, Reichenauer G (2013) J Non-Cryst Solids 368:105–111CrossRefGoogle Scholar
  35. 35.
    Pekala RW, Alviso CT, LeMay JD (1990) J Non-Cryst Solids 125:67–75CrossRefGoogle Scholar
  36. 36.
    Tan C, Fung BM, Newman JK, Vu C (2001) Adv Mater 13:644–646CrossRefGoogle Scholar
  37. 37.
    Jin H, Nishiyama Y, Wada M, Kuga S (2004) Colloids Surf A 240:63–67CrossRefGoogle Scholar
  38. 38.
    Chen H-B, Chiou B-S, Wang Y-Z, Schiraldi DA (2013) ACS Appl Mater Interfaces 5:1715–1721CrossRefGoogle Scholar
  39. 39.
    Shamsuri AA, Abdullah DK, Daik R (2012) Cellulose Chem Technol 46:45–52Google Scholar
  40. 40.
    Liu X, Wang M, Risen WM Jr (2002) Polymer-attached functional inorganic-organic hybrid nano-composite aerogels. Materials Research Society, Boston, pp 435–440Google Scholar
  41. 41.
    Zhang W, Zhang Y, Lu C, Deng Y (2012) J Mat Chem 22 11642–11650Google Scholar
  42. 42.
    Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallée H, Budtova T (2014) Biomacromolecules 15:2188–2195CrossRefGoogle Scholar
  43. 43.
    Sescousse R, Gavillon R, Budtova T (2011) Carbohydr Polym 83:1766–1774CrossRefGoogle Scholar
  44. 44.
    Kobayashi Y, Saito T, Isogai A (2014) Angew Chem Int Ed 53:10394–10397CrossRefGoogle Scholar
  45. 45.
    Zhao S, Zhang Z, Sèbe G, Wu R, Rivera Virtudazo RV, Tingaut P, Koebel MM (2015) Adv Funct Mater 25:2326–2334CrossRefGoogle Scholar
  46. 46.
    Zhang G, Dass A, Rawashdeh A-MM, Thomas J, Counsil JA, Sotiriou-Leventis C, Fabrizio EF, Ilhan F, Vassilaras P, Scheiman DA, McCorkle L, Palczer A, Johnston JC, Meador MA, Leventis N (2004) J Non-Cryst Solids 350:152–164CrossRefGoogle Scholar
  47. 47.
    Randall JP, Meador MAB, Jana SC (2013) J Mater Chem A 1:6642–6652CrossRefGoogle Scholar
  48. 48.
    Meador MAB, Capadona LA, McCorkle L, Papadopoulos DS, Leventis N (2007) Chem Mater 19:2247–2260CrossRefGoogle Scholar
  49. 49.
    Capadona LA, Meador MAB, Alunni A, Fabrizio EF, Vassilaras P, Leventis N (2006) Polymer 47:5754–5761CrossRefGoogle Scholar
  50. 50.
    Meador MAB (2011) Improving elastic properties of polymer-reinforced aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York, pp 315–334CrossRefGoogle Scholar
  51. 51.
    Churu G, Zupančič B, Mohite D, Wisner C, Luo H, Emri I, Sotiriou-Leventis C, Leventis N, Lu H (2015) J Sol–gel Sci Technol 75:98–123CrossRefGoogle Scholar
  52. 52.
    Bertino MF, Hund JF, Zhang G, Sotiriou-Leventis C, Tokuhiro AT, Leventis N (2004) J Sol–Gel Sci Technol 30:43–48CrossRefGoogle Scholar
  53. 53.
    Ayers MR, Hunt AJ (2001) J Non-Cryst Solids 285:123–127CrossRefGoogle Scholar
  54. 54.
    Hu X, Littrel K, Ji S, Pickles DG, Risen WM Jr (2001) J Non-Cryst Solids 288:184–190CrossRefGoogle Scholar
  55. 55.
    Demilecamps A, Reichenauer G, Rigacci A, Budtova T (2014) Cellulose 21:2625–2636CrossRefGoogle Scholar
  56. 56.
    Quignard F, Valentin R, Di Renzo F (2008) New J Chem 32:1300–1310CrossRefGoogle Scholar
  57. 57.
    Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Angew Chem Int Ed 51:2076–2079CrossRefGoogle Scholar
  58. 58.
    Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Carbohydr Polym 122:293–300CrossRefGoogle Scholar
  59. 59.
    Hayase G, Kanamori K, Abe K, Yano H, Maeno A, Kaji H, Nakanishi K (2014) ACS Appl Mater Interfaces 6:9466–9471CrossRefGoogle Scholar
  60. 60.
    Zhao S, Malfait WJ, Demilecamps WJ, Zhang Y, Brunner S, Huber L, Tingaut P, Rigacci A, Budtova T, Koebel MM (2015) Angew Chem Int Ed Engl 127:14490–14494CrossRefGoogle Scholar
  61. 61.
    Gavillon R, Budtova T (2007) Biomacromolecules 9:269–277CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Matthias M. Koebel
    • 1
    Email author
  • Lukas Huber
    • 1
  • Shanyu Zhao
    • 1
  • Wim J. Malfait
    • 1
  1. 1.Laboratory for Building Energy Materials and ComponentsSwiss Federal Laboratories for Materials Science and Technology, EmpaDübendorfSwitzerland

Personalised recommendations