Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:

Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silica-biopolymer hybrid aerogels: from laboratory to pilot scale

  • 1230 Accesses

  • 16 Citations

Abstract

Silica aerogel superinsulation products have a tremendous growth potential, particularly for industrial and pipe insulation. However, the high production cost and the poor mechanical properties prevent the adoption of silica aerogel superinsulation outside of the established niche markets. In this paper, we address these two barriers. We analyze the solvent use of current production processes for ambient-dried silica aerogel and derive a minimal solvent process that approaches the theoretical minimum of one volume of solvent for one volume of aerogel. We apply this process at the pilot scale and produce aerogel granulate with a thermal conductivity of 17.4 mW/(m·K). A review of the different mechanical reinforcement strategies reveals that strengthening typically comes with a penalty in thermal conductivity. In contrast, we highlight some of our recent work on hybrid polysaccharide (cellulose, pectin)—silica aerogels, where the mechanical reinforcement did not significantly increase thermal conductivity as a promising avenue for more robust silica-based hybrid aerogel materials.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Koebel M, Rigacci A, Achard P (2011) Aerogels for superinsulation: a synoptic view. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York, pp 607–633

  2. 2.

    Koebel M, Rigacci A, Achard P (2012) J Sol–Gel Sci Technol 63:315–339

  3. 3.

    Maleki H, Durães L, Portugal A (2014) J Non-Cryst Solids 385:55–74

  4. 4.

    Wong JCH, Kaymak H, Brunner S, Koebel MM (2014) Microporous Mesoporous Mater 183:23–29

  5. 5.

    Kistler SS (1932) J Phys Chem 36:52–64

  6. 6.

    Kistler SS (1931) Nature 127:741

  7. 7.

    Flörke OW, Graetsch HA, Brunk F, Benda L, Paschen S, Bergna HE, Roberts WO, Welsh WA, Libanati C, Ettlinger M, Kerner D, Maier M, Meon W, Schmoll R, Gies H, Schiffmann D (2000) Silica, Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Berlin

  8. 8.

    Nicolaon GA, Teichner S (1968) J Bull Soc Chim Fr 1900:1906

  9. 9.

    Schwertfeger F, Frank D, Schmidt M (1998) J Non-Cryst Solids 225:24–29

  10. 10.

    Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, New York

  11. 11.

    Hüsing N, Schubert U (2008) Organically modified monolithic silica aerogels. In: Schubert U, Hüsing N, Laine R (eds) Materials syntheses. Springer, Vienna, pp 39–45

  12. 12.

    Schwertfeger F, Emmerling A, Gross J, Schubert U, Fricke J (1994) Organically modified silica aerogels. In: Attia Y (ed) Sol–gel processing and applications. Plenum press, New York, pp 343–347

  13. 13.

    Zhao S, Manic MS, Ruiz-Gonzalez F, Koebel MM (2015) Aerogels, the sol–gel handbook. Wiley-VCH Verlag GmbH & Co. KGaA, Germany, pp 519–574

  14. 14.

    Malfait WJ, Zhao S, Verel R, Iswar S, Rentsch D, Fener R, Zhang Y, Milow B, Koebel MM (2015) Chem Mater. doi:10.1021/acs.chemmater.1025b02801

  15. 15.

    Schwertfeger F (1998)Process for producing organically modified aerogel. WO1998005591 A1

  16. 16.

    Koebel M, Zhao S, Brunner S, Simmen C (2015) Process for the production of an aerogel material. WO2015014813 A1

  17. 17.

    Prakash S, Brinker J, Hurd A, Rao SM (1995) Nature 374:439–443

  18. 18.

    Rao AV, Kulkarni MM, Amalnerkar DP, Seth T (2006) Appl Surf Sci 206:262–270

  19. 19.

    Malfait WJ, Verel R, Koebel MM (2014) J Phys Chem C 118:25545–25554

  20. 20.

    Huber L, Zhao S, Koebel MM (2015) In Cost-effective aerogel production by one-pot process, International conference future building & districts sustainability from nano to urban scale, Lausanne, Switzerland, Sept 9–11, 2015. http://infoscience.epfl.ch/record/212778/files/cisbat_proc_VolI_online.pdf

  21. 21.

    Katti A, Shimpi N, Roy S, Lu H, Fabrizio EF, Dass A, Capadona LA, Leventis N (2005) Chem Mater 18:285–296

  22. 22.

    Yin W, Venkitachalam S, Jarrett E, Staggs S, Leventis N, Lu H, Rubenstein D (2010) J Biomed Mater Res Part A 92:1431–1439

  23. 23.

    Nguyen BN, Meador MAB, Medoro A, Arendt V, Randall J, McCorkle L, Shonkwiler B (2010) ACS Appl. Mater Interfaces 2:1430–1443

  24. 24.

    Duan Y (2012) Fundamental studies on polymer and organic-inorganic hybrid nanoparticles reinforced silica aerogels, Polymer Engineering, The University of Akron, Ann Arbor, 2012, p 257. https://etd.ohiolink.edu/ap/10?0::NO:10:P10_ACCESSION_NUM:akron1333079860

  25. 25.

    Yuan B, Ding S, Wang D, Wang G, Li H (2012) Mat Lett 75:204–206

  26. 26.

    Pekala RW (1989) J Mater Sci 24:3221–3227

  27. 27.

    Rätzsch M, Bucka H, Ivanchev S, Pavlyuchenko V, Leitner P, Primachenko ON (2004) Macromol Symp 217:431–443

  28. 28.

    Leventis N (2007) Acc Chem Res 40:874–884

  29. 29.

    Biesmans G, Randall D, Francais E, Perrut M (1998) J Non-Cryst Solids 225:36–40

  30. 30.

    Rigacci A, Marechal JC, Repoux M, Moreno M, Achard P (2004) J Non-Cryst Solids 350:372–378

  31. 31.

    Chidambareswarapattar C, McCarver PM, Luo H, Lu H, Sotiriou-Leventis C, Leventis N (2013) Chem Mater 25:3205–3224

  32. 32.

    Li L, Yalcin B, Nguyen BN, Meador MAB, Cakmak M (2009) ACS Appl Mater Interfaces 1:2491–2501

  33. 33.

    Diascorn N, Calas S, Sallée H, Achard P, Rigacci A (2015) J Supercrit Fluids. doi:10.1016/j.supflu.2015.1005.1012

  34. 34.

    Weigold L, Mohite DP, Mahadik-Khanolkar S, Leventis N, Reichenauer G (2013) J Non-Cryst Solids 368:105–111

  35. 35.

    Pekala RW, Alviso CT, LeMay JD (1990) J Non-Cryst Solids 125:67–75

  36. 36.

    Tan C, Fung BM, Newman JK, Vu C (2001) Adv Mater 13:644–646

  37. 37.

    Jin H, Nishiyama Y, Wada M, Kuga S (2004) Colloids Surf A 240:63–67

  38. 38.

    Chen H-B, Chiou B-S, Wang Y-Z, Schiraldi DA (2013) ACS Appl Mater Interfaces 5:1715–1721

  39. 39.

    Shamsuri AA, Abdullah DK, Daik R (2012) Cellulose Chem Technol 46:45–52

  40. 40.

    Liu X, Wang M, Risen WM Jr (2002) Polymer-attached functional inorganic-organic hybrid nano-composite aerogels. Materials Research Society, Boston, pp 435–440

  41. 41.

    Zhang W, Zhang Y, Lu C, Deng Y (2012) J Mat Chem 22 11642–11650

  42. 42.

    Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallée H, Budtova T (2014) Biomacromolecules 15:2188–2195

  43. 43.

    Sescousse R, Gavillon R, Budtova T (2011) Carbohydr Polym 83:1766–1774

  44. 44.

    Kobayashi Y, Saito T, Isogai A (2014) Angew Chem Int Ed 53:10394–10397

  45. 45.

    Zhao S, Zhang Z, Sèbe G, Wu R, Rivera Virtudazo RV, Tingaut P, Koebel MM (2015) Adv Funct Mater 25:2326–2334

  46. 46.

    Zhang G, Dass A, Rawashdeh A-MM, Thomas J, Counsil JA, Sotiriou-Leventis C, Fabrizio EF, Ilhan F, Vassilaras P, Scheiman DA, McCorkle L, Palczer A, Johnston JC, Meador MA, Leventis N (2004) J Non-Cryst Solids 350:152–164

  47. 47.

    Randall JP, Meador MAB, Jana SC (2013) J Mater Chem A 1:6642–6652

  48. 48.

    Meador MAB, Capadona LA, McCorkle L, Papadopoulos DS, Leventis N (2007) Chem Mater 19:2247–2260

  49. 49.

    Capadona LA, Meador MAB, Alunni A, Fabrizio EF, Vassilaras P, Leventis N (2006) Polymer 47:5754–5761

  50. 50.

    Meador MAB (2011) Improving elastic properties of polymer-reinforced aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York, pp 315–334

  51. 51.

    Churu G, Zupančič B, Mohite D, Wisner C, Luo H, Emri I, Sotiriou-Leventis C, Leventis N, Lu H (2015) J Sol–gel Sci Technol 75:98–123

  52. 52.

    Bertino MF, Hund JF, Zhang G, Sotiriou-Leventis C, Tokuhiro AT, Leventis N (2004) J Sol–Gel Sci Technol 30:43–48

  53. 53.

    Ayers MR, Hunt AJ (2001) J Non-Cryst Solids 285:123–127

  54. 54.

    Hu X, Littrel K, Ji S, Pickles DG, Risen WM Jr (2001) J Non-Cryst Solids 288:184–190

  55. 55.

    Demilecamps A, Reichenauer G, Rigacci A, Budtova T (2014) Cellulose 21:2625–2636

  56. 56.

    Quignard F, Valentin R, Di Renzo F (2008) New J Chem 32:1300–1310

  57. 57.

    Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Angew Chem Int Ed 51:2076–2079

  58. 58.

    Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Carbohydr Polym 122:293–300

  59. 59.

    Hayase G, Kanamori K, Abe K, Yano H, Maeno A, Kaji H, Nakanishi K (2014) ACS Appl Mater Interfaces 6:9466–9471

  60. 60.

    Zhao S, Malfait WJ, Demilecamps WJ, Zhang Y, Brunner S, Huber L, Tingaut P, Rigacci A, Budtova T, Koebel MM (2015) Angew Chem Int Ed Engl 127:14490–14494

  61. 61.

    Gavillon R, Budtova T (2007) Biomacromolecules 9:269–277

Download references

Author information

Correspondence to Matthias M. Koebel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koebel, M.M., Huber, L., Zhao, S. et al. Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silica-biopolymer hybrid aerogels: from laboratory to pilot scale. J Sol-Gel Sci Technol 79, 308–318 (2016). https://doi.org/10.1007/s10971-016-4012-5

Download citation

Keywords

  • Aerogel
  • Thermal insulation
  • Sol–gel
  • Scale-up
  • Silica-biopolymer hybrids