Preparation of mono-dispersed spherical titania nanoparticles with precise size control using ethylene glycol

  • Joohyun Lim
  • Jung Pyo
  • Dongwook Jung
  • Hak-Sung Jung
  • Jin-Kyu LeeEmail author
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


The sizes of mono-dispersed titania nanoparticles (TNPs) can be precisely controlled within a diameter range of 70–650 nm by varying the concentration of water and titania precursor. The water content of the acetone solvent is varied, and ethylene glycol (EG)-stabilized titanium butoxide is used as the titania precursor. Increasing the amount of water can reduce the sizes of TNPs through the formation of a large number of small seeds in the initial reaction state. To obtain small TNPs without any aggregation, Tween 20 is used as a surfactant. Synthesis of TNPs using solvents and chelating agents other than acetone and EG, respectively, is also investigated. For example, other solvents, such as 1,4-dioxane and tetrahydrofuran, and chelating agents, such as triethylene glycol and catechol, are used for the synthesis and size control of TNPs.

Graphical Abstract


Titania Ethylene glycol Size control Water content Nanoparticles 


  1. 1.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRefGoogle Scholar
  2. 2.
    Chen H, Nanayakkara CE, Grassian VH (2012) Titanium dioxide photocatalysis in atmospheric chemistry. Chem Rev 112:5919–5948CrossRefGoogle Scholar
  3. 3.
    Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986CrossRefGoogle Scholar
  4. 4.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663CrossRefGoogle Scholar
  5. 5.
    Kazim S, Nazeeruddin MK, Grätzel M, Ahmad S (2014) Perovskite as light harvester: a game changer in photovoltaics. Angew Chem Int Ed 53:2812–2824CrossRefGoogle Scholar
  6. 6.
    Deepak TG, Anjusree GS, Thomas S, Arun TA, Nair SV, Sreekumaran Nair A (2014) A review on materials for light scattering in dye-sensitized solar cells. RSC Adv 4:17615–17638CrossRefGoogle Scholar
  7. 7.
    Chen Z, Belharouak I, Sun YK, Amine K (2013) Titanium-based anode materials for safe lithium-ion batteries. Adv Funct Mater 23:959–969CrossRefGoogle Scholar
  8. 8.
    Reddy MV, Subba Rao GV, Chowdari BV (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457CrossRefGoogle Scholar
  9. 9.
    Su X, Wu Q, Zhan X, Wu J, Wei S, Guo Z (2012) Advanced titania nanostructures and composites for lithium ion battery. J Mater Sci 47:2519–2534CrossRefGoogle Scholar
  10. 10.
    Yang Z, Choi D, Kerisit S, Rosso KM, Wang D, Zhang J, Graff G, Liu J (2009) Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J Power Sources 192:588–598CrossRefGoogle Scholar
  11. 11.
    Luo Y, Zhang J, Sun A, Chu C, Zhou S, Guo J, Chen T, Xu G (2014) Electric field induced structural color changes of SiO2@TiO2 core-shell colloidal suspensions. J Mater Chem C 2:1990–1994CrossRefGoogle Scholar
  12. 12.
    Shim H, Lim J, Shin CG, Jeon S-J, Han MG, Lee J-K (2012) Spectral reflectance switching of colloidal photonic crystal structure composed of positively charged TiO2 nanoparticles. Appl Phys Lett 100:063113CrossRefGoogle Scholar
  13. 13.
    Wijnhoven JEGJ, Vos WL (1998) Preparation of photonic crystals made of air spheres in titania. Science 281:802–804CrossRefGoogle Scholar
  14. 14.
    Wu S, Weng Z, Liu X, Yeung KWK, Chu PK (2014) Functionalized TiO2 based nanomaterials for biomedical applications. Adv Funct Mater 24:5464–5548CrossRefGoogle Scholar
  15. 15.
    Paunesku T, Rajh T, Wiederrecht G, Maser J, Vogt S, Stojicevic N, Protic M, Lai B, Oryhon J, Thurnauer M, Woloschak G (2003) Biology of TiO2-oligonucleotide nanocomposites. Nat Mater 2:343–346CrossRefGoogle Scholar
  16. 16.
    Tachikawa T, Asanoi Y, Kawai K, Tojo S, Sugimoto A, Fujitsuka M, Majima T (2008) Photocatalytic cleavage of single TiO2/DNA nanoconjugates. Chem Eur J 14:1492–1498CrossRefGoogle Scholar
  17. 17.
    Jana B, Mondal G, Biswas A, Chakraborty I, Ghosh S (2013) Functionalised TiO2 nanoparticles deliver oligo-histidine and avidin tagged biomolecules simultaneously into the cell. RSC Adv 3:8215–8219CrossRefGoogle Scholar
  18. 18.
    Zhang X, Wang F, Liu B, Kelly EY, Servos MR, Liu J (2014) Adsorption of DNA oligonucleotides by titanium dioxide nanoparticles. Langmuir 30:839–845CrossRefGoogle Scholar
  19. 19.
    Xia YN, Gates B, Yin YD, Lu Y (2000) Monodispersed colloidal spheres: old materials with new applications. Adv Mater 12:693–713CrossRefGoogle Scholar
  20. 20.
    Rancan F, Gao Q, Graf C, Troppens S, Hadam S, Hackbarth S, Kembuan C, Blume-Peytavi U, Ruhl E, Lademann J, Vogt A (2012) Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization, and colloidal stability. ACS Nano 6:6829–6842CrossRefGoogle Scholar
  21. 21.
    Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949CrossRefGoogle Scholar
  22. 22.
    Cargnello M, Gordon TR, Murray CB (2014) Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. Chem Rev 114:9319–9345CrossRefGoogle Scholar
  23. 23.
    Eiden-Assmann S, Widoniak J, Maret G (2003) Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles. Chem Mater 16:6–11CrossRefGoogle Scholar
  24. 24.
    Han C, Luque R, Dionysiou DD (2012) Facile preparation of controllable size monodisperse anatase titania nanoparticles. Chem Commun 48:1860–1862CrossRefGoogle Scholar
  25. 25.
    Lim J, Um JH, Park YJ, Sung Y-E, Lee J-K (2015) Simple size control of spherical titania nanoparticles with KCl. Bull Korean Chem Soc 36:1258–1261Google Scholar
  26. 26.
    Hench LL, West JK (1990) The sol–gel process. Chem Rev 90:33–72CrossRefGoogle Scholar
  27. 27.
    Chen D, Caruso RA (2013) Recent progress in the synthesis of spherical titania nanostructures and their applications. Adv Funct Mater 23:1356–1374CrossRefGoogle Scholar
  28. 28.
    Schubert U (2005) Chemical modification of titanium alkoxides for sol–gel processing. J Mater Chem 15:3701–3715CrossRefGoogle Scholar
  29. 29.
    Sanchez C, Livage J, Henry M, Babonneau F (1988) Glasses and glass ceramics from gels chemical modification of alkoxide precursors. J Non-Cryst Solids 100:65–76CrossRefGoogle Scholar
  30. 30.
    Livage J, Henry M, Sanchez C (1988) Sol–gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341CrossRefGoogle Scholar
  31. 31.
    Jiang XC, Herricks T, Xia YN (2003) Monodispersed spherical colloids of titania: synthesis, characterization, and crystallization. Adv Mater 15:1205–1209CrossRefGoogle Scholar
  32. 32.
    Wang P, Xie T-F, Li H-Y, Peng L, Zhang Y, Wu T-S, Pang S, Zhao Y-F, Wang D-J (2009) Synthesis and plasmon-induced charge-transfer properties of monodisperse gold-doped titania microspheres. Chem Eur J 15:4366–4372CrossRefGoogle Scholar
  33. 33.
    Yu HK, Yi G-R, Kang J-H, Cho Y-S, Manoharan VN, Pine DJ, Yang S-M (2008) Surfactant-assisted synthesis of uniform titania microspheres and their clusters. Chem Mater 20:2704–2710CrossRefGoogle Scholar
  34. 34.
    Wang L, Cai Y, Song L, Nie W, Zhou Y, Chen P (2014) High efficient photocatalyst of spherical TiO2 particles synthesized by a sol–gel method modified with glycol. Colloids Surf A 461:195–201CrossRefGoogle Scholar
  35. 35.
    Wang D, Yu R, Kumada N, Kinomura N (1999) Hydrothermal synthesis and characterization of a novel one-dimensional titanium glycolate complex single crystal: Ti(OCH2CH2O)2. Chem Mater 11:2008–2012CrossRefGoogle Scholar
  36. 36.
    Jiang XC, Wang YL, Herricks T, Xia YN (2004) Ethylene glycol-mediated synthesis of metal oxide nanowires. J Mater Chem 14:695–703CrossRefGoogle Scholar
  37. 37.
    Yu HK, Eun TH, Yi G-R, Yang S-M (2007) Multi-faceted titanium glycolate and titania structures from room-temperature polyol process. J Colloid Interface Sci 316:175–182CrossRefGoogle Scholar
  38. 38.
    Chen S-L, Dong P, Yang G-H, Yang J-J (1996) Kinetics of formation of monodisperse colloidal silica particles through the hydrolysis and condensation of tetraethylorthosilicate. Ind Eng Chem Res 35:4487–4493CrossRefGoogle Scholar
  39. 39.
    Mine E, Hirose M, Nagao D, Kobayashi Y, Konno M (2005) Synthesis of submicrometer-sized titania spherical particles with a sol–gel method and their application to colloidal photonic crystals. J Colloid Interface Sci 291:162–168CrossRefGoogle Scholar
  40. 40.
    Duncan WR, Prezhdo OV (2005) Electronic structure and spectra of catechol and alizarin in the gas phase and attached to titanium. J Phys Chem B 109:365–373CrossRefGoogle Scholar
  41. 41.
    Rajh T, Chen LX, Lukas K, Liu T, Thurnauer MC, Tiede DM (2002) Surface restructuring of nanoparticles: an efficient route for ligand–metal oxide crosstalk. J Phys Chem B 106:10543–10552CrossRefGoogle Scholar
  42. 42.
    Tanaka K, Capule MFV, Hisanaga T (1991) Effect of crystallinity of TiO2 on its photocatalytic action. Chem Phys Lett 187:73–76CrossRefGoogle Scholar
  43. 43.
    Froschl T, Hormann U, Kubiak P, Kucerova G, Pfanzelt M, Weiss CK, Behm RJ, Husing N, Kaiser U, Landfester K, Wohlfahrt-Mehrens M (2012) High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chem Soc Rev 41:5313–5360CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Joohyun Lim
    • 1
    • 2
  • Jung Pyo
    • 1
  • Dongwook Jung
    • 1
  • Hak-Sung Jung
    • 1
  • Jin-Kyu Lee
    • 1
    Email author
  1. 1.Department of ChemistrySeoul National UniversitySeoulKorea
  2. 2.Department of Chemistry and Nano SciencesEwha Womans UniversitySeoulKorea

Personalised recommendations