Advertisement

Low-cost carbon nanotube aerogels with varying and controllable density

  • Yang Shen
  • Ai Du
  • Xue-Ling Wu
  • Xiao-Guang Li
  • Jun Shen
  • Bin ZhouEmail author
Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

Abstract

Carbon nanotube (CNT) aerogels with varying and controllable density were fabricated from low-cost raw materials via simple steps based on sol–gel technique. CNT raw powders were dispersed in water with sodium dodecyl benzene sulfonate as surfactant under ultrasonic wave, which then coagulated into gel at room temperature. The gels were thoroughly washed by using hot (90 °C) polyvinyl alcohol (PVA) aqueous solution (mass ratio = 1 %) and then centrifuged. Finally, after solvent exchange, the gels were converted into aerogels by using supercritical CO2 fluid drying process. Free-standing and monolithic CNT aerogels with varying and controllable density (~0.06–0.35 g/cm3), elastic modulus (~0.17–0.87 MPa), electric conductivity (~0.56–4.55 S/m), specific surface area (SSA, ~100 m2/g), and average pore diameter (10–20 nm) were obtained. The density of CNT aerogels was correlated with the relative intensity ratio of the D band to the G band (I D/I G) in Raman spectrum as well, which indicated the degree of order. The residual PVA molecules intertwined CNTs, which pulled the SSA down and increased the degree of disorder of CNT aerogel in some extent. The low-cost CNT aerogels with varying and controllable density are meaningful in providing a competitive candidate for potential target materials in inertial confinement fusion experiments and laser-driven quasi-isentropic compression experiments.

Graphical Abstract

Free-standing and monolithic carbon nanotube (CNT) aerogels with varying and controllable density were fabricated from low-cost raw materials via simple steps based on sol–gel technique, which mainly includes dispersion, centrifugation, and drying. CNT aerogels exhibited varying and controllable density (~0.06–0.35 g/cm3), elastic modulus (~0.17–0.87 MPa), electric conductivity (~0.56 to 4.55 S/m), specific surface area (SSA, ~100 m2/g), average pore diameter (10–20 nm), and cross-linked micrograph. In addition, the Raman spectrum of CNT aerogels was given, and the correlations between density and I D/I G were discussed. The low-cost CNT aerogels with varying and controllable density are meaningful in providing a competitive candidate for potential target materials in inertial confinement fusion experiments and laser-driven quasi-isentropic compression experiments.

Keywords

CNT Aerogel Controllable density Sol–gel PVA Monolithic 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (5117216, 51102184 and 11404243), National High Technology Research and Development Program of China (2013AA031801), Science and Technology Innovation Fund of Shanghai Aerospace, China (SAST201321 and SAST201469). Thanks to Li-Ping Zou and Peng Yan for their kind help in measurement and beneficial discussions.

References

  1. 1.
    Hüsing N, Schubert U (1998) Aerogels—airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37(1–2):22–45. doi: 10.1002/(SICI)1521-3773(19980202)37:1/2<22:AID-ANIE22>3.0.CO;2-I CrossRefGoogle Scholar
  2. 2.
    Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer ST, Miller JM, Dunn B (1998) Carbon aerogels for electrochemical applications. J Non-Cryst Solids 225:74–80. doi: 10.1016/S0022-3093(98)00011-8 CrossRefGoogle Scholar
  3. 3.
    Du A, Zhou B, Zhang Z, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6(3):941–968. doi: 10.3390/ma6030941 CrossRefGoogle Scholar
  4. 4.
    Halperin WP, Choi H, Davis JP, Pollanen J (2008) Impurity effects of aerogel in superfluid 3He. J Phys Soc Jpn 77(11):111002. doi: 10.1143/jpsj.77.111002 CrossRefGoogle Scholar
  5. 5.
    Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24(9):3221–3227. doi: 10.1007/BF01139044 CrossRefGoogle Scholar
  6. 6.
    Pekala RW, Alviso CT, Kong FM, Hulsey SS (1992) Aerogels derived from multifunctional organic monomers. J Non-Cryst Solids 145:90–98. doi: 10.1016/S0022-3093(05)80436-3 CrossRefGoogle Scholar
  7. 7.
    Pekala RW, Alviso CT, Lemay JD (1990) Organic aerogels: microstructural dependence of mechanical properties in compression. J Non-Cryst Solids 125(1–2):67–75. doi: 10.1016/0022-3093(90)90324-F CrossRefGoogle Scholar
  8. 8.
    Wang J, Angnes L, Tobias H, Roesner RA, Hong KC, Glass RS, Kong FM, Pekala RW (2002) Carbon aerogel composite electrodes. Anal Chem 65(65):2300–2303. doi: 10.1021/ac00065a022 Google Scholar
  9. 9.
    Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG (2007) Carbon nanotube aerogels. Adv mater 19(5):661–664. doi: 10.1002/adma.200601748 CrossRefGoogle Scholar
  10. 10.
    Ye Y, Bindl DJ, Jacobberger RM, Wu MY, Roy SS, Arnold MS (2014) Semiconducting carbon nanotube aerogel bulk heterojunction solar cells. Small 10(16):3299–3306. doi: 10.1002/smll.201400696 CrossRefGoogle Scholar
  11. 11.
    Yuxi X, Kaixuan S, Chun L, Gaoquan S (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7):4324–4330. doi: 10.1021/nn101187z CrossRefGoogle Scholar
  12. 12.
    Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH, Baumann TF (2010) Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc 132(40):14067–14069. doi: 10.1021/ja1072299 CrossRefGoogle Scholar
  13. 13.
    Li J, Lu Y, Yang D, Sun Q, Liu Y, Zhao H (2011) Lignocellulose aerogel from wood-ionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions. Biomacromolecules 12(5):1860–1867. doi: 10.1021/bm200205z CrossRefGoogle Scholar
  14. 14.
    Pauzauskie PJ, Crowhurst JC, Worsley MA, Laurence TA, Kilcoyne ALD, Yinmin W, Willey TM, Visbeck KS, Fakra SC, Evans WJ, Zaug JM, Satcher JH (2011) Synthesis and characterization of a nanocrystalline diamond aerogel. Proc Natl Acad Sci USA 108(21):8550–8553. doi: 10.1073/pnas.1010600108 CrossRefGoogle Scholar
  15. 15.
    Chidambareswarapattar C, Larimore Z, Sotiriou-Leventis C, Mang JT, Leventis N (2010) One-step room-temperature synthesis of fibrous polyimide aerogels from anhydrides and isocyanates and conversion to isomorphic carbons. J Mater Chem 20(43):9666–9678. doi: 10.1039/C0JM01844A CrossRefGoogle Scholar
  16. 16.
    Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678–680. doi: 10.1038/381678a0 CrossRefGoogle Scholar
  17. 17.
    Bockrath M, Cobden DH, Lu J, Rinzler AG, Smalley RE, Balents L, McEuen PL (1999) Luttinger-liquid behaviour in carbon nanotubes. Nature 397(6720):598–601. doi: 10.1038/17569 CrossRefGoogle Scholar
  18. 18.
    Dresselhaus MS (1998) Nanotechnology: new tricks with nanotubes. Nature 391(6662):19–20. doi: 10.1038/34036 CrossRefGoogle Scholar
  19. 19.
    Odom TW, Huang J-L, Kim P, Lieber CM (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64. doi: 10.1038/34145 CrossRefGoogle Scholar
  20. 20.
    Aliev AE, Oh J, Kozlov ME, Kuznetsov AA, Fang S, Fonseca AF, Ovalle R, Lima MD, Haque MH, Gartstein YN (2009) Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 323(5921):1575–1578. doi: 10.1126/science.1168312 CrossRefGoogle Scholar
  21. 21.
    Zou J, Liu J, Karakoti AS, Kumar A, Joung D, Qiang L (2010) Ultralight multiwalled carbon nanotube aerogel. ACS Nano 4:7293–7302. doi: 10.1021/nn102246a CrossRefGoogle Scholar
  22. 22.
    Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, Shu Q, Wu D (2010) Carbon nanotube sponges. Adv Mater 22(5):617–621. doi: 10.1002/adma.200902986 CrossRefGoogle Scholar
  23. 23.
    Kim KH, Vural M, Islam MF (2011) Single-walled carbon nanotube aerogel-based elastic conductors. Adv Mater 23(25):2865–2869. doi: 10.1002/adma.201100310 CrossRefGoogle Scholar
  24. 24.
    Zhang X, Liu J, Xu B, Su Y, Luo Y (2011) Ultralight conducting polymer/carbon nanotube composite aerogels. Carbon 49(6):1884–1893. doi: 10.1016/j.carbon.2011.01.011 CrossRefGoogle Scholar
  25. 25.
    Bordjiba T, Mohamedi M, Dao LH (2008) New class of carbon-nanotube aerogel electrodes for electrochemical power sources. Adv Mater 20(4):815–819. doi: 10.1002/adma.200701498 CrossRefGoogle Scholar
  26. 26.
    Gui J-Y, Zhou B, Zhong Y-H, Du A, Shen J (2011) Fabrication of gradient density SiO2 aerogel. J Sol-Gel Sci Technol 58(2):470–475. doi: 10.1007/s10971-011-2415-x CrossRefGoogle Scholar
  27. 27.
    Bellunato T, Calvi M, Da Silva Costa CF, Matteuzzi C, Musy M, Perego DL (2006) Refractive index inhomogeneity within an aerogel block. Nucl Instrum Methods Phys Res Sect A 556(1):140–145. doi: 10.1016/j.nima.2005.10.070 CrossRefGoogle Scholar
  28. 28.
    Gerlach R, Kraus O, Fricke J, Eccardt PC, Kroemer N, Magori V (1992) Modified SiO2 aerogels as acoustic impedance matching layers in ultrasonic devices. J Non-Cryst Solids 145:227–232. doi: 10.1016/S0022-3093(05)80461-2 CrossRefGoogle Scholar
  29. 29.
    Zhu X, Zhou B, Du A, Chen K, Li Y, Zhang Z, Shen J, Wu G, Ni X (2012) Potential SiO2/CRF bilayer perturbation aerogel target for ICF hydrodynamic instability experiment. Fusion Eng Des 87(2):92–97. doi: 10.1016/j.fusengdes.2011.10.007 CrossRefGoogle Scholar
  30. 30.
    Prisbrey ST, Park H-S, Remington BA, Cavallo R, May M, Pollaine SM, Rudd R, Maddox B, Comley A, Fried L, Blobaum K, Wallace R, Wilson M, Swift D, Satcher J, Kalantar D, Perry T, Giraldez E, Farrell M, Nikroo A (2012) Tailored ramp-loading via shock release of stepped-density reservoirs. Phys Plasmas 19(5):056311. doi: 10.1063/1.3699361 CrossRefGoogle Scholar
  31. 31.
    Jones SM (2006) Aerogel: space exploration applications. J Sol-Gel Sci Technol 40(2–3):351–357. doi: 10.1007/s10971-006-7762-7 CrossRefGoogle Scholar
  32. 32.
    Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127(3211):741. doi: 10.1038/127741a0 CrossRefGoogle Scholar
  33. 33.
    Fricke J, Tillotson T (1997) Aerogels: production, characterization, and applications. Thin Solid Films 297(1–2):212–223. doi: 10.1016/S0040-6090(96)09441-2 CrossRefGoogle Scholar
  34. 34.
    Kim KH, Oh Y, Islam MF (2013) Mechanical and thermal management characteristics of ultrahigh surface area single-walled carbon nanotube aerogels. Adv Funct Mater 23(3):377–383. doi: 10.1002/adfm.201201055 CrossRefGoogle Scholar
  35. 35.
    Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409(2):47–99. doi: 10.1016/j.physrep.2004.10.006 CrossRefGoogle Scholar
  36. 36.
    Dresselhaus MS, Jorio A, Saito R (2010) Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu Rev Condens Matter Phys 1(1):89–108. doi: 10.1146/annurev-conmatphys-070909-103919 CrossRefGoogle Scholar
  37. 37.
    Vigolo B, Pénicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495):1331–1334. doi: 10.1126/science.290.5495.1331 CrossRefGoogle Scholar
  38. 38.
    Poulin P, Vigolo B, Launois P (2002) Films and fibers of oriented single wall nanotubes. Carbon 40(10):1741–1749. doi: 10.1016/S0008-6223(02)00042-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yang Shen
    • 1
  • Ai Du
    • 1
  • Xue-Ling Wu
    • 1
  • Xiao-Guang Li
    • 1
    • 2
  • Jun Shen
    • 1
  • Bin Zhou
    • 1
    Email author
  1. 1.Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Pohl Institute of Solid State PhysicsTongji UniversityShanghaiChina
  2. 2.Department of Applied Physics, School of ScienceNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations