Journal of Sol-Gel Science and Technology

, Volume 78, Issue 3, pp 576–581 | Cite as

Large room-temperature magnetoresistance in epitaxial La0.7Ca0.25Sr0.05MnO3 thin films prepared by sol–gel method

  • Yuanyuan ZhangEmail author
  • Wenxia Dong
  • Ruijuan Qi
  • Rong Huang
  • Jing Yang
  • Wei Bai
  • Ni Zhong
  • Ying Chen
  • Genshui Wang
  • Xianlin Dong
  • Xiaodong TangEmail author
Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications


Epitaxial La0.7Ca0.25Sr0.05MnO3 (LCSMO) thin films were successfully prepared on LaAlO3 (LAO) substrates by ordinary aqueous sol–gel method. X-ray diffraction result shows that the films have perfect crystalline orientation. The HRTEM results confirm that the films have epitaxial structure and the interface is very sharp and no misfit dislocations. The selected area electron diffraction patterns and fast Fourier transformation patterns mean that there exist three domains in the thin film. The single-particle spin-flip excitations are dominant for the metallic ferromagnets in low-temperature range. In paramagnetic range, the temperature dependence of resistivity can be well analyzed using a small polaron theory. The magnetoresistance value for the films reaches maximum about 65 % with 7 T magnetic field at 285 K which is promising for highly demanding applications. The conventional sol–gel method produces the lanthanum manganese oxide thin films with excellent epitaxial structure and large magnetoresistance at room temperature which can be used for either fundamental studies or real applications.

Graphical Abstract

The conventional sol–gel method produces the lanthanum manganese oxide thin films with excellent epitaxial structure and giant magnetoresistance at room temperature which can be used for either fundamental studies or real applications.


Sol–gel La0.7Ca0.25Sr0.05MnO3 Epitaxial growth Magnetic properties Magnetoresistance 



The work was supported by National Natural Science Foundation of China (Grant Nos. 51302084, 11104074, 61574058, 61176011, 61376129, 11374098 and 11304097), Natural Science Foundation of Shanghai (Nos. 13ZR1412200), Key Laboratory of Inorganic function material and device, Chinese Academy of Sciences (KLIFMD-2011-06, KLIFMD-2012-01) and Fundamental Research Funds for the Central Universities (ECNU) and Key Laboratory of Polar Materials and Devices, Ministry of Education.


  1. 1.
    Salamon MB, Jaime M (2001) Rev Mod Phys 73:583CrossRefGoogle Scholar
  2. 2.
    Yamada H, Ogawa Y, Ishii Y, Sato H, Kawasaki M, Akoh H, Tokura Y (2004) Science 305:646CrossRefGoogle Scholar
  3. 3.
    Hwang HY, Cheong SW, Ong NP, Batlogg B (1996) Phys Rev Lett 77:2041CrossRefGoogle Scholar
  4. 4.
    Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y (1995) Phys Rev B 51:14103CrossRefGoogle Scholar
  5. 5.
    Moreo A, Yunoki S, Dagotto E (1999) Science 283:2034CrossRefGoogle Scholar
  6. 6.
    Schiffer P, Ramirez AP, Bao W, Cheong SW (1995) Phys Rev Lett 75:3336CrossRefGoogle Scholar
  7. 7.
    Jin S, Tiefel TH, McCormack M, Fastnacht RA, Ramesh R, Chen LH (1994) Science 264:413CrossRefGoogle Scholar
  8. 8.
    Jin S, McCormack M, Tiefel TH, Ramesh R (1994) J Appl Phys 76:6929CrossRefGoogle Scholar
  9. 9.
    Phan MH, Yu SC, Hur NH (2005) Appl Phys Lett 86:072504CrossRefGoogle Scholar
  10. 10.
    Prokhorov VG, Komashko VA, Kaminsky GG, Lee YP, Hyun YH, Yu KK, Park JS, Svetchnikov VL (2006) Low Temp Phys 32:650CrossRefGoogle Scholar
  11. 11.
    Thanh TD, Nguyen LH, Manh DH, Chien NV, Phong PT, Khiem NV, Hong LV, Phuc NX (2012) Phys B 407:145CrossRefGoogle Scholar
  12. 12.
    Cao DY, Zhang YY, Dong WX, Yang J, Bai W, Chen Y, Wang GS, Dong XL, Tang XD (2015) Ceram Int 41:S381CrossRefGoogle Scholar
  13. 13.
    Tomioka Y, Asamitsu A, Tokura Y (2000) Phys Rev B 63:024421CrossRefGoogle Scholar
  14. 14.
    Jaime M, Haidner HT, Salamon MB, Rubinstein M, Dorsey P, Emin D (1997) Phys Rev Lett 78:951CrossRefGoogle Scholar
  15. 15.
    Jakob G, Westerburg W, Martin F, Adrian H (1998) Phys Rev B 58:14966CrossRefGoogle Scholar
  16. 16.
    Adamo C, Perroni CA, Cataudella V, Filippis GD, Orgiani P, Maritato L (2009) Phys Rev B 79:045125CrossRefGoogle Scholar
  17. 17.
    Moon EJ, Balachandran PV, Kirby BJ, Keavney DJ, Sichel-Tissot RJ, Schleputz CM, Karapetrova E, Cheng XM, Rondinelli JM, May SJ (2014) Nano Lett 14:2509CrossRefGoogle Scholar
  18. 18.
    Jain M, Shukla P, Li Y, Hundley MF, Wang H, Foltyn SR, Burrell AK, McCleskey TM, Jia QX (2006) Adv Mater 18:2695CrossRefGoogle Scholar
  19. 19.
    Jain M, Lin Y, Shukla P, Li Y, Wang H, Hundley MF, Burrell AK, McCleskey TM, Foltyn SR, Jia QX (2007) Thin Solid Films 515:6411CrossRefGoogle Scholar
  20. 20.
    Staruch M, Gao H, Gao PX, Jain M (2012) Adv Funct Mater 22:3591CrossRefGoogle Scholar
  21. 21.
    Rivadulla F, Bi Z, Bauer E, Rivas-Murias B, Vila-Fungueiriño JM, Jia QX (2013) Chem Mater 25:55CrossRefGoogle Scholar
  22. 22.
    Vila-Fungueiriño JM, Rivas-Murias B, Rodríguez-González B, Rivadulla F (2014) Chem Mater 26:1480CrossRefGoogle Scholar
  23. 23.
    Hasenkox U, Mitze C, Waser R (1997) J Am Ceram Soc 80:2709CrossRefGoogle Scholar
  24. 24.
    Ren Q, Zhang YY, Chen Y, Wang GS, Dong XL, Tang XD (2013) J Sol-Gel Sci Technol 67:170CrossRefGoogle Scholar
  25. 25.
    Yin WH, Zhang YY, Cao DY, Yang J, Bai W, Chen Y, Wang GS, Dong XL, Duan CG, Tang XD (2015) J Appl Phys 117:17E102CrossRefGoogle Scholar
  26. 26.
    Méchin L, Wu S, Guillet B, Perna P, Fur C, Lebargy S, Adamo C, Schlom DG, Routoure JM (2013) J Phys D Appl Phys 46:202001CrossRefGoogle Scholar
  27. 27.
    Hibble SJ, Copper SP, Hannon AC, Fawcett ID, Greenblatt M (1999) J Phys Condens Matter 11:9221CrossRefGoogle Scholar
  28. 28.
    Snyder GJ, Hisks R, DiCarolis S, Bwasley MR, Geballe TH (1996) Phys Rev B 53:14434CrossRefGoogle Scholar
  29. 29.
    Hundley MF, Hawley M, Heffner RH, Jia QX, Neumeier JJ, Tesmer J, Thompson JD, Wu XD (1995) Appl Phys Lett 67:860CrossRefGoogle Scholar
  30. 30.
    Jain M, Bauer E, Ronning F, Hundley MF, Civale L, Wang H, Maiorov B, Burrell AK, McClesky TM, Foltyn SR, Depaula RF, Jia QX (2008) J Am Ceram Soc 91:1858CrossRefGoogle Scholar
  31. 31.
    Sun Y, Xu X, Zheng L, Zhang Y (1999) Phy Rev B 60:12317CrossRefGoogle Scholar
  32. 32.
    Moshnyaga V, Gehrke K, Lebedev O, Sudheendra L, Belenchuk A, Raabe S, Shapoval O, Verbeeck J, Van Tendeloo G, Samwer K (2009) Phys Rev B 79:134413CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yuanyuan Zhang
    • 1
    Email author
  • Wenxia Dong
    • 1
  • Ruijuan Qi
    • 1
  • Rong Huang
    • 1
  • Jing Yang
    • 1
  • Wei Bai
    • 1
  • Ni Zhong
    • 1
  • Ying Chen
    • 2
  • Genshui Wang
    • 2
  • Xianlin Dong
    • 2
  • Xiaodong Tang
    • 1
    Email author
  1. 1.Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic EngineeringEast China Normal UniversityShanghaiPeople’s Republic of China
  2. 2.Key Laboratory of Inorganic Function Materials and Devices, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations