Skip to main content
Log in

Synthesis of TiO2 hollow particles with highly dispersed CaCO3 template particulates and their photoactivity toward a VOC pollutant

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This brief article reports a suitable preparation of TiO2 hollow particles using titanium tetra-isopropoxide (TTIP) as a precursor and highly dispersed calcium carbonate (CaCO3) particle templates prepared from CaCl2 and dimethylcarbonate in the presence of the dispersing agent polyvinylpyrrolidone. The synthesis of TiO2 hollow particles was optimized considering certain experimental conditions: (a) the amount of TTIP, (b) the hydrolysis rate of TTIP in water/ethanol solvent, and (c) the mass of CaCO3 template particulates. The morphology and particle sizes of the resulting hollow particles (CaCO3 templates removed on addition of acid) were assessed by scanning electron microscopy (SEM and SEM-EDX); their crystalline phase (anatase) was determined by X-ray diffraction techniques and the specific surface area by the BET method. A formation mechanism of the TiO2 particles is described in terms of the TiO2 particulates generated under each experimental condition. The photoactivity of the TiO2 hollow particles was subsequently examined through the transformation of a volatile organic pollutant (iso-propanol) in air whose faster rate of photodegradation relative to TiO2 particles (synthesized without CaCO3) correlates with the greater specific surface area of these hollow particles (19.0 vs. 65.1 m2 g−1).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. McDonald CJ, Devon MJ (2002) Hollow latex particles: synthesis and applications. Adv Colloid Interface Sci 99:181–213

    Article  Google Scholar 

  2. Wicks Z, Jones F, Pappas SP (1992) Organic coatings, science and technology, vol 1. Wiley, New York, pp 306–320

    Google Scholar 

  3. Lee C-F, Hsu M-L, Chu C-H, Wu T-Y (2014) Synthesis and characteristics of poly(methyl methacrylate-co-methacrylic acid)/poly(methacrylic acid-co-N-isopropylacrylamide) thermosensitive semi-hollow latex particles and their application to drug carriers. J Polym Sci A Polym Chem 52:3441–3451

    Article  Google Scholar 

  4. Fujiwara M, Shiokawa K, Hayashi K, Morigaki K, Nakahara YJ (2007) Direct encapsulation of BSA and DNA into silica microcapsules (hollow spheres). Mater Res A 81:103–112

    Article  Google Scholar 

  5. Kondo Y, Yoshikawa H, Awaga K, Murayama M, Mori T, Sunada K, Bandow S, Iijima S (2008) preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TO2 hollow spheres. Langmuir 24:547–550

    Article  Google Scholar 

  6. Cho HJ, Jung D (2011) The application of TiO2 hollow spheres on dye-sensitized solar cells. Bull Korean Chem Soc 32:4382

    Article  Google Scholar 

  7. Wang H, Miyauchi M, Ishikawa Y, Pyatenko A, Koshizaki N, Li Y, Li L, Li X, Bando Y, Golberg D (2011) Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells. J Am Chem Soc 133:19102–19109

    Article  Google Scholar 

  8. Geng H, Cao X, Zhang Y, Geng K, Qu G, Tang M, Zheng J, Yang Y, Gu H (2015) Hollow nanospheres composed of titanium dioxide nanocrystals modified with carbon and gold for high performance lithium ion batteries. J Power Sources 294:465–472

    Article  Google Scholar 

  9. Tsai M-C, Lee J-Y, Chen P-C, Chang Y-W, Chang Y-C, Yang M-H, Chiu H-T, Lin I-N, Lee R-K, Lee C-Y (2014) Effects of size and shell thickness of TiO2 hierarchical hollow spheres on photocatalytic behavior: an experimental and theoretical study. Appl Catal B Environ 147:499–507

    Article  Google Scholar 

  10. Bala H, Yu Y, Zhang Y (2008) Synthesis and photocatalytic oxidation properties of titania hollow spheres. Mater Lett 62:2070–2073

    Article  Google Scholar 

  11. Zurmühl C, Popescu R, Gerthsen D, Feldmann C (2011) Microemulsion-based synthesis of nanoscale TiO2 hollow spheres. Solid State Sci 13:1505–1509

    Article  Google Scholar 

  12. Yu J, Zhang J (2010) A simple template-free approach to TiO2 hollow spheres with enhanced photocatalytic activity. Dalton Trans 39:5860–5867

    Article  Google Scholar 

  13. Zhang Q, Li W, Liu S (2011) Controlled fabrication of nanosized TiO2 hollow sphere particles via acid catalytic hydrolysis/hydrothermal treatment. Powder Technol 212:145–150

    Article  Google Scholar 

  14. Jia C, Cao Y, Yang P (2013) TiO2 hollow spheres: one-pot synthesis and enhanced photocatalysis. Funct Mater Lett 6:1350025

    Article  Google Scholar 

  15. Yang G, Hu P, Cao Y, Yuan F, Xu R (2010) Fabrication of porous TiO2 hollow spheres and their application in gas sensing. Nanoscale Res Lett 5:1437–1441

    Article  Google Scholar 

  16. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957

    Article  Google Scholar 

  17. Zimmermann C, Feldmann C, Wanner M, Gerthsen D (2007) Nanoscale gold hollow spheres through an emulsion approach. Small 3:1347–1349

    Article  Google Scholar 

  18. Ogura T, Shibata H, Sakai K, Sakai H, Abe M (2009) Direct preparation of highly ordered multilayer-type silica nanocapsules using spontaneously formed vesicles as templates. Chem Lett 38:120–121

    Article  Google Scholar 

  19. Langevin D (1988) Microemulsions. Acc Chem Res 21:255–260

    Article  Google Scholar 

  20. Horikoshi S, Akao Y, Ogura T, Sakai H, Abe M, Serpone N (2010) On the stability of surfactant-free water-in-oil emulsions and synthesis of hollow SiO2 nanospheres. Colloids Surf A Physicochem Eng Asp 372:55–60

    Article  Google Scholar 

  21. Zhang D, Zhu J, Zhang N, Liu T, Chen L, Liu X, Ma R, Zhang H, Qiu G (2015) Controllable fabrication and magnetic properties of double-shell cobalt oxides hollow particles. Sci Rep 5:8737. doi:10.1038/srep08737

    Article  Google Scholar 

  22. Li Y, Zhou P, Dai Z, Hu Z, Sun P, Bao J (2006) A facile synthesis of PdCo bimetallic hollow nanospheres and their application to Sonogashira reaction in aqueous media. New J Chem 30:832–837

    Article  Google Scholar 

  23. Zhu Y-Z, Chen H-B, Wang Y-P, Li Z-H, Cao Y-L, Chi Y-B (2006) Mesoscopic photonic crystals made of TiO2 hollow spheres connected by cylindrical tubes. Chem Lett 35:756–757

    Article  Google Scholar 

  24. Chen GC, Kuo CY, Lu SY (2005) A general process for preparation of core–shell particles of complete and smooth shells. J Am Ceram Soc 88:277–283

    Article  Google Scholar 

  25. Kaczmarek H, Kamińska A, Świątek M, Rabek JF (1998) Photo-oxidative degradation of some water-soluble polymers in the presence of accelerating agents. Die Angew Makromol Chem 261(262):109–121

    Article  Google Scholar 

  26. Horikoshi S, Minatodani Y, Sakai H, Abe M, Serpone N (2011) Characteristics of microwaves on second generation nitrogen-doped TiO2 nanoparticles and their effect on photoassisted processes. J Photochem Photobiol A Chem 217:191–200

    Article  Google Scholar 

  27. Cui J, Sun D, Zhou W, Liu H, Hu P, Ren N, Qin H, Huang Z, Lin J, Ma H (2011) Electrocatalytic oxidation of nucleobases by TiO2 nanobelts. Phys Chem Chem Phys 13:9232–9237

    Article  Google Scholar 

  28. Hall WH (1949) X-ray line broadening in metals. Proc Phys Soc A 62:741–743

    Article  Google Scholar 

  29. Mittemeijer EJ, Welzel U (2008) The “state of the art” of the diffraction analysis of crystallite size and lattice strain. Z Kristallogr 223:552–560

    Article  Google Scholar 

  30. Ungár T (1997) Strain broadening caused by dislocations, JCPDS-International Centre for diffraction data. http://www.icdd.com/resources/axa/vol40/V40_612.pdf. Accessed Nov 2015

  31. Ungár T (2008) Dislocation model of strain anisotropy, JCPDS-International Centre for diffraction data, pp 76–87; ISSN 1097-0002; http://www.icdd.com/resources/axa/vol51/v51_11.pdf. Accessed Nov 2015

  32. Kapoor K, Lahiri D, Rao SVR, Sanyal T, Kashyap BP (2004) X-ray diffraction line profile analysis for defect study in Zr-2 × 5 % Nb material. Bull Mater Sci 27:59–67

    Article  Google Scholar 

  33. Sanz-Hervas A, Villar C, Garrido M, Valtuena JF, Aguilar M, David JPR, Roberts JS, Halliwell MAG, Abril EJ, Lopez M, Izpura I (1999) Asymmetric lattice distortion in pseudomorphic multilayers grown on misoriented substrates, JCPDS-International Centre for diffraction data, pp 120–129

  34. Braslavsky SE, Braun AM, Emeline AV, Litter MI, Palmisano L, Parmon VN, Serpone N (2011) Glossary of terms used in photocatalysis and radiation catalysis. Pure Appl Chem 83:931–1014

    Article  Google Scholar 

  35. Sacco O, Stoller M, Vaiano V, Ciambelli P, Chianese A, Sannino D (2012) Photocatalytic degradation of organic dyes under visible light on N-doped photocatalysts. Int J Photoenergy 2012:626759

    Google Scholar 

  36. Tayade RJ, Surolia PK, Kulkarni RG, Jasra RV (2007) Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci Technol Adv Mater 8:455–462

    Article  Google Scholar 

  37. Rochkind M, Pasternak S, Paz Y (2015) Using dyes for evaluating photocatalytic properties: a critical review. Molecules 20:88–110

    Article  Google Scholar 

  38. In S-I, Vesborg PCK, Abrams BL, Hou Y, Chorkendorff I (2011) J Photochem Photobiol A Chem 222:258–262

    Article  Google Scholar 

Download references

Acknowledgments

S.H. is grateful to the Japan Society for the Promotion of Science for financial support (JSPS; Grant-in-aid for Scientific Research No. C-25420820) and to Sophia University for a grant from the Sophia University-wide Collaborative Research Fund to S.H. One of us (N.S.) thanks Prof. Albini of the University of Pavia (Italy) for his continued hospitality in his laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Horikoshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horikoshi, S., Oshimo, K., Sumi, T. et al. Synthesis of TiO2 hollow particles with highly dispersed CaCO3 template particulates and their photoactivity toward a VOC pollutant. J Sol-Gel Sci Technol 78, 373–381 (2016). https://doi.org/10.1007/s10971-015-3939-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3939-2

Keywords

Navigation