Advertisement

Journal of Sol-Gel Science and Technology

, Volume 78, Issue 1, pp 187–194 | Cite as

A new sol–gel precursor for preparation of La0.56Sr0.42Co0.2Fe0.8O3−δ film

  • S. Promsuy
  • A. Tangtrakarn
  • C. Mongkolkachit
  • S. Wanakitti
  • V. Amornkitbamrung
Original Paper: Sol–gel and hybrid materials for energy, environment and building applications

Abstract

A new sol–gel route was proposed for the fabrication of micron-thick La0.56Sr0.42Co0.2Fe0.8O3−δ (LSCF) film on a yttria-stabilized zirconia (YSZ) substrate. A sol basis made from metal nitrates, ethylene glycol and adipic acid was modified with sugar and/or acetylacetone (ACAC). The suitable combination of ACAC and sugar guaranteed the formation of continuous film as well as remarkably improved film adhesion to the YSZ substrate. The better coverage of LSCF film on the YSZ substrate was further enhanced with the tuning of a spin speed and deposition repetition. The interfacial resistances are 0.41, 0.19 and 0.10 Ω cm2 at 700, 750 and 800 °C, respectively. These results suggest that the LSCF film should perform well as an interlayer between a YSZ substrate and adjacent porous LSCF layers.

Graphical Abstract

Keywords

LSCF SOFC Sugar ACAC Spin coating Sol–gel 

Notes

Acknowledgments

This work was supported by National Metal and Materials Technology Center (MT-B-52-END-07-067-I), the Science and Achievement Scholarship of Thailand (SAST), Thailand, the Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network, Center for Alternative Energy Research and Development, Khon Kaen University, Biosensing Technology for Sustainable Development Research Group, Khon Kaen University, the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, through the Advance Functional Materials Cluster of Khon Kaen University, the Integrated Nanotechnology Research Center, Khon Kaen University.

References

  1. 1.
    Fu C, Sun K, Zhang N, Chen X, Zhou D (2007) Electrochim Acta 52:4589–4594CrossRefGoogle Scholar
  2. 2.
    Fan B, Liu X (2009) Solid State Ion 180:973–977CrossRefGoogle Scholar
  3. 3.
    Kim HS, Kang JH, Oh I-H, Jeong CH, Boo SJ, Jo JH, Kim H-S (2012) In: International conference on power and energy systems, Lecture Notes in Information Technology, vol 13, pp 396–401Google Scholar
  4. 4.
    Hwang HJ, Moon J-W, Lee S, Lee EA (2005) J Power Sources 145:243–248CrossRefGoogle Scholar
  5. 5.
    Santillán MJ, Caneiro A, Quaranta N, Boccaccini AR (2009) J Eur Ceram Soc 29:1125–1132CrossRefGoogle Scholar
  6. 6.
    Yasuda K, Uemura K, Shiota T (2012) J Phys Conf Ser 339:012006CrossRefGoogle Scholar
  7. 7.
    Panigrahi S, Bhattacharjee S, Besra L, Singh BP, Sinha SP (2010) J Eur Ceram Soc 30:1097–1103CrossRefGoogle Scholar
  8. 8.
    Patakangas J, Ma Y, Jing Y, Lund P (2014) J Power Sources 263:315–331CrossRefGoogle Scholar
  9. 9.
    Montenegro Hernández A, Mogni L, Caneiro A (2010) Int J Hydrogen Energy 35:6031-6036Google Scholar
  10. 10.
    Tietz F, Haanappel VAC, Mai A, Mertens J, Stöver D (2006) J Power Sources 156:20–22CrossRefGoogle Scholar
  11. 11.
    Pena Martinez J, Marrero Lopez D, Sanchez Bautista C, Dos Santos Garcia AJ, Ruiz Morales JC, Canales Vazquez J, Nunez P (2010) Boletin de la Sociedad Espanola de Ceramica y Vidrio 49:15-22Google Scholar
  12. 12.
    Jia L, Lü Z, Huang X, Liu Z, Chen K, Sha X, Li G, Su W (2006) J Alloys Compd 424:299–303CrossRefGoogle Scholar
  13. 13.
    Dumaisnil K, Fasquelle D, Mascot M, Rolle A, Roussel P, Minaud S, Duponchel B, Vannier RN, Carru JC (2014) Thin Solid Films 553:89–92CrossRefGoogle Scholar
  14. 14.
    Fan B, Yan J, Shi W (2010) J Eur Ceram Soc 30:1803–1808CrossRefGoogle Scholar
  15. 15.
    Mao JB, Zhang FL, Liao GC, Zhou YM, Huang HP, Wang CY, Wu SH (2014) Mater Des 60:328–333CrossRefGoogle Scholar
  16. 16.
    Lassman AM (2011) Evaluation of cathode materials for low temperature (500–700C) solid oxide fuel cells. Master, University of Connecticut, U.S.Google Scholar
  17. 17.
    de Florio DZ, Muccillo R, Esposito V, Di Bartolomeo E, Traversa E (2005) J Electrochem Soc 152:A88–A92CrossRefGoogle Scholar
  18. 18.
    Lee J-W, Liu Z, Yang L, Abernathy H, Choi S-H, Kim H-E, Liu M (2009) J Power Sources 190:307–310CrossRefGoogle Scholar
  19. 19.
    Baumann FS, Fleig J, Habermeier H-U, Maier J (2006) Solid State Ionics 177:1071–1081CrossRefGoogle Scholar
  20. 20.
    Nie L, Liu Z, Liu M, Yang L, Zhang Y, Liu M (2010) J Electrochem Sci Technol 1:50–56CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. Promsuy
    • 1
  • A. Tangtrakarn
    • 1
    • 2
    • 3
  • C. Mongkolkachit
    • 4
  • S. Wanakitti
    • 4
  • V. Amornkitbamrung
    • 1
    • 2
    • 3
  1. 1.Department of Physics, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.Integrated Nanotechnology Research CenterKhon Kaen UniversityKhon KaenThailand
  3. 3.Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and StorageKhon KaenThailand
  4. 4.National Metal and Materials Technology Center (MTEC)National Science and Technology Development Agency (NSTDA)Khlong LuangThailand

Personalised recommendations