Journal of Sol-Gel Science and Technology

, Volume 77, Issue 3, pp 650–653 | Cite as

Dielectric and piezoelectric properties of (1 − x)Ba0.67Sr0.33TiO3xBa0.9Ca0.1Ti0.9Zr0.1O3 ceramics

  • Zunping Xu
  • Hua Qiang
Original Paper


The dielectric and piezoelectric properties of the ceramic system, BST–xBCTZ (x = 0, 0.05, 0.1, 0.2), were investigated. The primary nanopowders were synthesized using citrate–nitrate combustion route to obtain the homogenous compounds. The results show that the addition of BCTZ has a great effect on the microstructure and electrical properties of ceramics. The dielectric and piezoelectric properties are improved with the addition of BCTZ. Transition temperature T c increases with increasing BCTZ content, which is mainly contributed to the increase in the Ba/Sr ratio. The optimal dielectric properties and piezoelectric properties for the BST–xBCTZ ceramics have been obtained at x = 0.05.

Graphical Abstract


Ceramics Dielectric properties Piezoelectric properties Sintering Substitution 



This work was supported by Fundamental Research Funds for the Central Universities (XDJK2015C066).


  1. 1.
    Im J, Auciello O, Baumann PK, Striffer SK (2000) Appl Phys Lett 76:625–627CrossRefGoogle Scholar
  2. 2.
    Zimmermann F, Voigts M, Weil C, Jakoby R, Wang P, Menesklou W (2001) J Eur Ceram Soc 21:2019–2023CrossRefGoogle Scholar
  3. 3.
    Su B, Button TW (2004) J Appl Phys 95:1382–1385CrossRefGoogle Scholar
  4. 4.
    Sagar R, Madolappa S, Sharanappa N, Raibagkar RL (2013) Mater Chem Phys 140:119–125CrossRefGoogle Scholar
  5. 5.
    Tang XG, Chew KH, Wang J, Chan HLW (2004) Appl Phys Lett 85:991–993CrossRefGoogle Scholar
  6. 6.
    Liu WF, Ren XB (2009) Phys Rev Lett 103:257602CrossRefGoogle Scholar
  7. 7.
    Hansen P, Hennings D, Schreinemacher H (1998) J Am Ceram Soc 81:1369–1373CrossRefGoogle Scholar
  8. 8.
    Xu Z, Qiang H, Song C, Chen Y (2014) J Mater Sci Mater Electron 25:2957–2960CrossRefGoogle Scholar
  9. 9.
    Wang J, Zhang X, Zhang J, Li H, Li Z (2012) J Phys Chem Solids 73:957–960CrossRefGoogle Scholar
  10. 10.
    Li W, Xu Z, Chu R, Fu P, Zang G (2010) Phys B 405:4513–4516CrossRefGoogle Scholar
  11. 11.
    Swatsitang E, Putjuso T (2014) J Sol–Gel Sci Technol 72:30–36CrossRefGoogle Scholar
  12. 12.
    Eoh YJ, Kim ES (2014) Jpn J Appl Phys 53:08NB04-1–6Google Scholar
  13. 13.
    Maiwa H (2007) Jpn J Appl Phys 46:7013–7017CrossRefGoogle Scholar
  14. 14.
    Xu Z, Qiang H, Chen Y, Nie C (2014) Ceram Int 40:4617–4620CrossRefGoogle Scholar
  15. 15.
    Wu JG, Xiao DQ, Wu WJ, Zhu JG, Wang J (2011) J Alloy Comp 509:L359–L361CrossRefGoogle Scholar
  16. 16.
    Yan D, Xu Z, Chen X, Xiao D, Zhu J (2012) Ceram Int 38:2785–2789CrossRefGoogle Scholar
  17. 17.
    Xu Q, Zhang XF, Huang YH, Chen W (2010) J Phys Chem Solids 71:1550–1556CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Faculty of Materials and EnergySouthwest UniversityChongqingChina
  2. 2.Chongqing College of Humanities, Science and TechnologyChongqingChina

Personalised recommendations