Advertisement

Journal of Sol-Gel Science and Technology

, Volume 77, Issue 2, pp 325–334 | Cite as

Ultralow-density double-layer silica aerogel fabrication for the intact capture of cosmic dust in low-Earth orbits

  • Makoto TabataEmail author
  • Hideyuki Kawai
  • Hajime Yano
  • Eiichi Imai
  • Hirofumi Hashimoto
  • Shin-ichi Yokobori
  • Akihiko Yamagishi
Original Paper

Abstract

The fabrication of an ultralow-density hydrophobic silica aerogel for the intact capture cosmic dust during the Tanpopo mission is described. The Tanpopo experiment performed on the International Space Station orbiting the Earth includes the collection of terrestrial and interplanetary dust samples on a silica aerogel capture medium exposed to space for later ground-based biological and chemical analyses. The key to the mission’s success is the development of high-performance capture media, and the major challenge is to satisfy the mechanical requirements as a spacecraft payload while maximizing the performance for intact capture. To this end, an ultralow-density (0.01 g cm−3) soft aerogel was employed in combination with a relatively robust 0.03 g cm−3 aerogel. A procedure was also established for the mass production of double-layer aerogel tiles formed with a 0.01 g cm−3 surface layer and a 0.03 g cm−3 open-topped, box-shaped base layer, and 60 aerogel tiles were manufactured. The fabricated aerogel tiles have been demonstrated to be suitable as flight hardware with respect to both scientific and safety requirements.

Graphical Abstract

Keywords

Silica aerogel Sol–gel polymerization Supercritical drying Cosmic dust Astrobiology Tanpopo 

Notes

Acknowledgments

The authors are grateful to the members of the Tanpopo Collaboration and Prof. I. Adachi of the High Energy Accelerator Research Organization (KEK) in Japan for their assistance with the aerogel design, development, and fabrication. This study was supported in part by the Space Plasma Laboratory at ISAS, JAXA, and we would like to thank Dr. S. Hasegawa and the crew for their two-stage light-gas gun operation.

References

  1. 1.
    Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741CrossRefGoogle Scholar
  2. 2.
    Shi F, Wang L, Liu J (2006) Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process. Mater Lett 60:3718–3722CrossRefGoogle Scholar
  3. 3.
    Yokogawa H, Yokoyama M (1995) Hydrophobic silica aerogels. J Non-Cryst Solids 186:23–29CrossRefGoogle Scholar
  4. 4.
    Tabata M, Adachi I, Ishii Y, Kawai H, Sumiyoshi T, Yokogawa H (2010) Development of transparent silica aerogel over a wide range of densities. Nucl Instrum Methods A 623:339–341CrossRefGoogle Scholar
  5. 5.
    Burchell MJ, Graham G, Kearsley A (2006) Cosmic dust collection in aerogel. Annu Rev Earth Planet Sci 34:385–418CrossRefGoogle Scholar
  6. 6.
    Tsou P (1995) Silica aerogel captures cosmic dust intact. J Non-Cryst Solids 186:415–427CrossRefGoogle Scholar
  7. 7.
    Noguchi T, Nakamura T, Ushikubo T, Kita NT, Valley JW, Yamanaka R, Kimoto Y, Kitazawa Y (2011) A chondrule-like object captured by space-exposed aerogel on the international space station. Earth Planet Sci Lett 309:198–206CrossRefGoogle Scholar
  8. 8.
    Brownlee D, Tsou P, Aléon J et al (2006) Comet 81P/Wild 2 under a microscope. Science 314:1711–1716CrossRefGoogle Scholar
  9. 9.
    Yamagishi A, Yano H, Okudaira K, Kobayashi K, Yokobori S, Tabata M, Kawai H (2007) TANPOPO: astrobiology exposure and micrometeoroid capture experiments. Biol Sci Space 21:67–75 [in Japanese]CrossRefGoogle Scholar
  10. 10.
    Yamagishi A, Yano H, Okudaira K, Kobayashi K, Yokobori S, Tabata M, Kawai H, Yamashita M, Hashimoto H, Naraoka H, Mita H (2009) Tanpopo: astrobiology exposure and micrometeoroid capture experiments. Trans JSASS Space Tech Jpn 7:Tk_49–Tk_55CrossRefGoogle Scholar
  11. 11.
    Yamagishi A, Yokobori S, Hashimoto H, Yano H, Higashide M, Tabata M, Imai E, Yabuta H, Kobayashi K, Kawai H (2014) Tanpopo: astrobiology exposure and micrometeoroid capture experiments—proposed experiments at the Exposure Facility of ISS-JEM. Trans JSASS Aerosp Tech Jpn 12:Tk_49–Tk_55CrossRefGoogle Scholar
  12. 12.
    Tabata M, Imai E, Yano H, Hashimoto H, Kawai H, Kawaguchi Y, Kobayashi K, Mita H, Okudaira K, Sasaki S, Yabuta H, Yokobori S, Yamagishi A (2014) Design of a silica-aerogel-based cosmic dust collector for the Tanpopo mission aboard the International Space Station. Trans JSASS Aerosp Tech Jpn 12:Pk_29–Pk_34CrossRefGoogle Scholar
  13. 13.
    National Institute of Standards and Technology (U.S. Department of Commerce) (2011) Carbon dioxide, Phase change data. In: Linstrom PJ (ed) NIST chemistry WebBook. http://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI&Mask=4#Thermo-Phase. Accessed 10 July 2015
  14. 14.
    Tabata M, Adachi I, Kawai H, Sumiyoshi T, Yokogawa H (2012) Hydrophobic silica aerogel production at KEK. Nucl Instrum Methods A 668:64–70CrossRefGoogle Scholar
  15. 15.
    Adachi I, Sumiyoshi T, Hayashi K, Iida N, Enomoto R, Tsukada K, Suda R, Matsumoto S, Natori K, Yokoyama M, Yokogawa H (1995) Study of a threshold Cherenkov counter based on silica aerogels with low refractive indices. Nucl Instrum Methods A 355:390–398CrossRefGoogle Scholar
  16. 16.
    Sumiyoshi T, Adachi I, Enomoto R, Iijima T, Suda R, Leonidopoulos C, Marlow DR, Prebys E, Kawabata R, Kawai H, Ooba T, Nanao M, Suzuki K, Ogawa S, Murakami A, Khan MHR (1999) Silica aerogel Cherenkov counter for the KEK B-factory experiment. Nucl Instrum Methods A 433:385–391CrossRefGoogle Scholar
  17. 17.
    Adachi I, Fratina S, Fukushima T, Gorišek A, Iijima T, Kawai H, Konishi M, Korpar S, Kozakai Y, Križan P, Matsumoto T, Mazuka Y, Nishida S, Ogawa S, Ohtake S, Pestotnik R, Saitoh S, Seki T, Sumiyoshi T, Tabata M, Uchida Y, Unno Y, Yamamoto S (2005) Study of highly transparent silica aerogel as a RICH radiator. Nucl Instrum Methods A 553:146–151CrossRefGoogle Scholar
  18. 18.
    Tabata M, Adachi I, Kawai H, Kubo M, Sato T (2012) Recent progress in silica aerogel Cherenkov radiator. Phys Proc 37:642–649CrossRefGoogle Scholar
  19. 19.
    Tillotson TM, Hrubesh LW (1992) Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process. J Non-Cryst Solids 145:44–50CrossRefGoogle Scholar
  20. 20.
    Tabata M, Adachi I, Fukushima T, Kawai H, Kishimoto H, Kuratani A, Nakayama H, Nishida S, Noguchi T, Okudaira K, Tajima Y, Yano H, Yokogawa H, Yoshida H (2005) Development of silica aerogel with any density. In: Yu B (ed) Conference record on 2005 IEEE nuclear science symposium, vol 2, pp 816–818Google Scholar
  21. 21.
    Born M, Wolf E (1975) Principles of optics, 5th edn. Pergamon Press, OxfordGoogle Scholar
  22. 22.
    Burchell MJ, Fairey SAJ, Foster NJ, Cole MJ (2009) Hypervelocity capture of particles in aerogel: dependence on aerogel properties. Planet Space Sci 57:58–70CrossRefGoogle Scholar
  23. 23.
    Jones SM (2007) A method for producing gradient density aerogel. J Sol-Gel Sci Technol 44:255–258CrossRefGoogle Scholar
  24. 24.
    Tabata M, Yano H, Kawai H, Imai E, Kawaguchi Y, Hashimoto H, Yamagishi A (2015) Silica aerogel for capturing intact interplanetary dust particles for the Tanpopo experiment. Orig Life Evol Biosph 45:225–229CrossRefGoogle Scholar
  25. 25.
    Tabata M, Kawaguchi Y, Yokobori S, Kawai H, Takahashi J, Yano H, Yamagishi A (2011) Tanpopo cosmic dust collector: silica aerogel production and bacterial DNA contamination analysis. Biol Sci Space 25:7–12CrossRefGoogle Scholar
  26. 26.
    Ogata Y, Yabuta H, Nakashima S, Okudaira K, Moriwaki T, Ikemoto Y, Hasegawa S, Tabata M, Yokobori S, Mita H, Kobayashi K, Imai E, Hashimoto H, Kawaguchi Y, Sugino T, Yano H, Yamagishi A (2013) Hypervelocity capture of Murchison meteorite particles in aerogel: ground-based experiment for the cosmic dusts capture at the International Space Station. ISTS Web paper archives, 2013-r-51pGoogle Scholar
  27. 27.
    Kawaguchi Y, Sugino T, Tabata M, Okudaira K, Imai E, Yano H, Hasegawa S, Hashimoto H, Yabuta H, Kobayashi K, Kawai H, Mita H, Yokobori S, Yamagishi A (2014) Fluorescence imaging of microbe-containing particles shot from a two-stage light-gas gun into an aerogel. Orig Life Evol Biosph 44:43–60CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Makoto Tabata
    • 1
    • 2
    Email author
  • Hideyuki Kawai
    • 1
  • Hajime Yano
    • 2
  • Eiichi Imai
    • 3
  • Hirofumi Hashimoto
    • 2
  • Shin-ichi Yokobori
    • 4
  • Akihiko Yamagishi
    • 4
  1. 1.Department of PhysicsChiba UniversityChibaJapan
  2. 2.Institute of Space and Astronautical Science (ISAS)Japan Aerospace Exploration Agency (JAXA)SagamiharaJapan
  3. 3.Department of BioengineeringNagaoka University of TechnologyNagaokaJapan
  4. 4.Department of Applied Life SciencesTokyo University of Pharmacy and Life SciencesHachiojiJapan

Personalised recommendations