Advertisement

Journal of Sol-Gel Science and Technology

, Volume 77, Issue 1, pp 109–118 | Cite as

A modified sol–gel method for low-temperature synthesis of homogeneous nanoporous La1−x Sr x MnO3 with large specific surface area

  • Shuxin ZhuangEmail author
  • Yimin Liu
  • Shengwei Zeng
  • Jianxian Lv
  • Xiaobin Chen
  • Jingjing Zhang
Original Paper
  • 299 Downloads

Abstract

A modified sol–gel (MSG) method was developed to synthesize perovskite La1−x Sr x MnO3 (x = 0.2, 0.4, 0.6, 0.8) with large specific surface area that allows for control of their particle size from the micrometer level to the nanometer level with novel nanoporous structure. The MSG method utilized carbon black (Vulcan XC-72R) as a pore-forming material during the preparation process. Two important process parameters, the calcination temperature and the pore former material addition, were investigated to control the size of the La1−x Sr x MnO3 particles. The phase evolution of La1−x Sr x MnO3 powders was investigated by thermogravimetric analysis (TG/DSC) and X-ray diffraction pattern. The results showed that the pure La0.6Sr0.4MnO3 phase has been obtained at about 550 °C in air, which is lowered around 150 °C comparing to conventional sol–gel method. In scanning electron microscope studied, it presented novel homogeneous nanoporous morphology with the average particle size from 30 to 100 nm. Based on the Brunauer–Emmett–Teller method analysis, the specific surface area of La1−x Sr x MnO3 was significantly influenced by the calcination temperature, the pore former material addition and the strontium content. The largest specific surface area of La0.2Sr0.8MnO3 reached 114.3 m2/g.

Graphical abstract

Keywords

Sol–gel method Pore-forming material Nanoporous LSMx 

Notes

Acknowledgments

This work was financially supported by the Natural Science Foundation of Fujian Province of China (No. 2014J05064), the Research Foundation of Education Bureau of Fujian Province of China (No. JK2013034) and the Talents Introduction Program of Xiamen University of Technology (No. YKJ12019R).

References

  1. 1.
    Sapkota P, Kim H (2009) J Ind Eng Chem 15:445–450CrossRefGoogle Scholar
  2. 2.
    Neburchilov V, Wang HJ, Martin JJ, Qu W (2010) J Power Sources 195:1271CrossRefGoogle Scholar
  3. 3.
    Lee YC, Peng PY, Chang WS, Huang CM (2014) J Taiwan Inst Chem Eng 45:2334–2339CrossRefGoogle Scholar
  4. 4.
    Nguyen SV, Szabo V, On DT, Kaliaguine S (2002) Microporous Mesoporous Mater 54:51–61CrossRefGoogle Scholar
  5. 5.
    Deng JG, Zhang L, Dai HX, Au CT (2009) Appl Catal A 352:43–49CrossRefGoogle Scholar
  6. 6.
    Tulloch J, Donne SW (2009) J Power Sources 188:359–366CrossRefGoogle Scholar
  7. 7.
    Wang G, Bao Y, Tian Y, Xia J, Cao D (2010) J Power Sources 195:6463–6467CrossRefGoogle Scholar
  8. 8.
    Liu Y, Dai H, Deng J, Li X, Wang Y, Arandiyan H, Xie S, Yang H, Guo G (2013) J Catal 305:146–153CrossRefGoogle Scholar
  9. 9.
    Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, Zhao Z, Li J (2014) ACS Catal 4:2917–2940CrossRefGoogle Scholar
  10. 10.
    Isupova LA, Alikina GM, Tsybulya SV, Boldyreva NN, Kryukova GN, Yakovleva IS, Isupov VP, Sadykov VA (2001) Int J Inorg Mater 3:559–562CrossRefGoogle Scholar
  11. 11.
    Deganello F, Marcì G, Deganello G (2009) J Eur Ceram Soc 29:439–450CrossRefGoogle Scholar
  12. 12.
    Huang L, Zhang F, Wang N, Chen R, Hsu AT (2012) Int J Hydrogen Energy 37:1272–1279CrossRefGoogle Scholar
  13. 13.
    Ma J, Theingi M, Chen Q, Wang W, Liu X, Zhang H (2013) Ceram Int 39:7839–7843CrossRefGoogle Scholar
  14. 14.
    Kaliaguine S, Neste AV, Szabo V, Gallot JE, Bassir M, Muzychuk R (2001) Appl Catal A 209:345–358CrossRefGoogle Scholar
  15. 15.
    Szabo V, Bassir M, Neste AV, Kaliaguine S (2002) Appl Catal B: Environ 37:175–180CrossRefGoogle Scholar
  16. 16.
    Levasseur B, Kaliaguine S (2008) Appl Catal A 343:29–38CrossRefGoogle Scholar
  17. 17.
    Liu Y, Dai H, Du Y, Deng J, Zhang L, Zhao Z (2012) Appl Catal B: Environ 119–120:20–31CrossRefGoogle Scholar
  18. 18.
    Arandiyan H, Dai H, Deng J, Liu Y, Bai B, Wang Y, Li X, Xie S, Li J (2013) J Catal 307:327–339CrossRefGoogle Scholar
  19. 19.
    Liu Y, Dai H, Deng J, Li X, Wang Y, Arandiyan H, Xie S, Yang H, Guo G (2013) J Catal 307:146–153CrossRefGoogle Scholar
  20. 20.
    Jin C, Cao X, Zhang L, Zhang C, Yang R (2013) J Power Sources 241:225–230CrossRefGoogle Scholar
  21. 21.
    Lu F, Sui J, Su J, Jin C, Shen M, Yang R (2014) J Power Sources 271:55–59CrossRefGoogle Scholar
  22. 22.
    Ciambelli P, Cimino S, Rossi SD, Faticanti M, Lisi L, Minelli G, Pettiti I, Porta P, Russo G, Turco M (2000) Appl Catal B: Environ 24:243–253CrossRefGoogle Scholar
  23. 23.
    Wang S, Xue G, Liang J, Yuan Y, Zhang X (2014) Catal Commun 45:39–43CrossRefGoogle Scholar
  24. 24.
    Jakab E, Omastová M (2005) J Anal Appl Pyrolysis 74:204–214CrossRefGoogle Scholar
  25. 25.
    Liu HP, Wang ZX, Li XH, Guo HJ, Peng WJ (2008) J Power Sources 184:469–472CrossRefGoogle Scholar
  26. 26.
    Gaodon M, Laberty-Robert C, Ansart F, Stevens P, Rousset A (2002) Solid State Sci 4:125–133CrossRefGoogle Scholar
  27. 27.
    Gaudon M, Laberty-Robert C, Ansart F, Dessemond L, Stevens P (2004) J Power Sources 133:214–222CrossRefGoogle Scholar
  28. 28.
    Shannon RD, Prewitt CT (1969) Acta Crystallogr B 25:925–946CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringXiamen University of TechnologyXiamenChina

Personalised recommendations