Advertisement

Journal of Sol-Gel Science and Technology

, Volume 76, Issue 1, pp 129–137 | Cite as

Fabrication of filter paper with tunable wettability and its application in oil–water separation

  • Xiaojuan Feng
  • Yanlong ShiEmail author
  • Jia Liu
  • Wu Yang
Original Paper

Abstract

Artificial materials with controllable wettability are of global interests in oil–water related applications. In the present report, a surface with superhydrophilicity/superoleophilicity and underwater superoleophobicity was constructed on filter paper via dip-coating ZnO colloids. However, the wettability of the filter paper was converted to be superhydrophobic and superoleophilic after being modified by octyltrimethoxysilane, and water contact angle on the surface is larger than 150° while oil contact angle is smaller than 5°. The filter paper can be employed to selectively adsorb oil floating on water or separate water–oil mixtures via filtration process because of its superhydrophobicity and superoleophilicity. Additionally, the filter paper has also the capacity to hold water, which is expected to be used as a material for manufacturing labwares.

Graphical Abstract

A filter paper with superhydrophobicity and superoleophilicity was fabricated by dip-coating and subsequent modification. Water contact angle and sliding angle on the filter paper are 157°and 6°, respectively. The filter paper with superhydrophobicity and superoleophilicity could be employed to separate oil–water mixture with high efficiency.

Keywords

Superhydrophobic Superoleophilic ZnO colloids Filter paper Oil/water separation 

Notes

Acknowledgments

The authors sincerely acknowledge the financial support to this project from Nature Science Foundation of China (20873101), the General Program of the Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities (Grant No. ZX1406) and the President Fund of Hexi University (Grant No. XZ201304).

Supplementary material

Supplementary material 1 (AVI 9012 kb)

References

  1. 1.
    Wang C-F, Tzeng F-S, Chen H-G, Chang C-J (2012) Langmuir 28:10015–10019CrossRefGoogle Scholar
  2. 2.
    Kobaku SPR, Kota AK, Lee DH, Mabry JM, Tuteja A (2012) Patterned superomniphobic–superomniphilic surfaces: templates for site-selective self-assembly. Angew Chem Int Ed 51:10109–10113CrossRefGoogle Scholar
  3. 3.
    Wang B, Liang W, Guo Z, Liu W (2015) Chem Soc Rev 44:336–361CrossRefGoogle Scholar
  4. 4.
    Chu Z, Feng Y, Seeger S (2014) Angew Chem Int Ed 53:2–13CrossRefGoogle Scholar
  5. 5.
    Tian Y, Bin S, Jiang L (2014) Adv Mater 26:6872–6897CrossRefGoogle Scholar
  6. 6.
    Yao X, Song Y, Jiang L (2011) Adv Mater 23:719–734CrossRefGoogle Scholar
  7. 7.
    Wang F, Lei S, Xue M, Junfei O, Li W (2014) Langmuir 30:1281–1289CrossRefGoogle Scholar
  8. 8.
    Yang J, Zhang Z, Xianghui X, Zhu X, Men X, Zhou X (2012) J Mater Chem 22:2834–2837CrossRefGoogle Scholar
  9. 9.
    Zhang F, Zhang WB, Shi Z, Wang D, Jin J, Jiang L (2013) Adv Mater 25:4192–4198CrossRefGoogle Scholar
  10. 10.
    Zhou X, Zhang Z, Xianghui X, Guo F, Men X, Ge B (2013) ACS Appl Mater Interfaces 5:7208–7214CrossRefGoogle Scholar
  11. 11.
    Zhou X, Zhang Z, Xianghui X, Men X, Zhu X (2013) Ind Eng Chem Res 52:9411–9416CrossRefGoogle Scholar
  12. 12.
    Zeng J, Guo Z (2014) Sol-Gel Surf A Physicochem Eng Asp 444:283–288CrossRefGoogle Scholar
  13. 13.
    Wang S, Li M, Lu Q (2010) ACS Appl Mater Interfaces 2:677–683CrossRefGoogle Scholar
  14. 14.
    Chuan D, Wang J, Chen Z, Chen D (2014) Appl Surf Sci 313:304–310CrossRefGoogle Scholar
  15. 15.
    Jin C, Yan R, Huang J (2011) J Mater Chem 21:17519–17525CrossRefGoogle Scholar
  16. 16.
    Huang J, Yuanqing G (2011) Curr Opin Colloid Interface Sci 16:470–481CrossRefGoogle Scholar
  17. 17.
    Li S, Wei Y, Huang J (2010) Chem Lett 39:20–21CrossRefGoogle Scholar
  18. 18.
    Obeso CG, Sousa MP, Song W, Rodriguez-Pérez MA, Bhushan B, Mano JF (2013) Sol-Gel Surf A Physicochem Eng Asp 416:51–55CrossRefGoogle Scholar
  19. 19.
    Ogihara H, Xie J, Saji T (2013) Sol–Gel Surf A Physicochem Eng Asp 434:35–41CrossRefGoogle Scholar
  20. 20.
    Sousa MP, Mano JF (2013) ACS Appl Mater Interfaces 5:3731–3737CrossRefGoogle Scholar
  21. 21.
    Mates JE, Schutzius TM, Bayer IS, Qin J, Waldroup DE, Megaridis CM (2014) Ind Eng Chem Res 53:222–227CrossRefGoogle Scholar
  22. 22.
    Wang ZL (2004) J Phys: Condens Matter 16:R829–R858Google Scholar
  23. 23.
    Spanhel L, Anderson MA (1991) J Am Chem Soc 113:2826–2833CrossRefGoogle Scholar
  24. 24.
    Chu Z, Seeger S (2014) Chem Soc Rev 43:2784–2798CrossRefGoogle Scholar
  25. 25.
    Teisala H, Tuominen M, Kuusipalo J (2014) Adv Mater Interfaces 1:1300026 (1–20)CrossRefGoogle Scholar
  26. 26.
    Bixler GD, Bhushan B (2013) Nanoscale 5:7685–7710CrossRefGoogle Scholar
  27. 27.
    Teng C, Lu X, Ren G, Zhu Y, Wan M, Jiang L (2014) Adv Mater Interfaces 1:1400099(1–5)CrossRefGoogle Scholar
  28. 28.
    Liu Q, Patel AA, Liu L (2014) ACS Appl Mater Interfaces 6:8996–9003CrossRefGoogle Scholar
  29. 29.
    Raza A, Ding B, Zainab G, El-Newehy M, Al-Deyab SS, Yu J (2014) J Mater Chem A 2:10137–10145CrossRefGoogle Scholar
  30. 30.
    Nicolas M, Guittard F, Géribaldi S (2006) Angew Chem Int Ed 45:2251–2254CrossRefGoogle Scholar
  31. 31.
    Liu M, Jiang L (2010) Adv Funct Mater 20:3753–3764CrossRefGoogle Scholar
  32. 32.
    Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, Jiang L (2011) Adv Mater 23:4270–4273CrossRefGoogle Scholar
  33. 33.
    Jin X, Shi B, Zheng L, Pei X, Zhang X, Sun Z, Du Y, Kim JH, Wang X, Dou S, Liu K, Jiang L (2014) Adv Funct Mater 24:2721–2726CrossRefGoogle Scholar
  34. 34.
    Bhushan B, Jung YC (2011) Prog Mater Sci 56:1–108CrossRefGoogle Scholar
  35. 35.
    Cassie ABD, Baxter S (1944) Trans Faraday Soc 40:546–551CrossRefGoogle Scholar
  36. 36.
    Schrader ME (1995) Langmuir 11:3585–3589CrossRefGoogle Scholar
  37. 37.
    Xiu Y, Zhu L, Hess DW, Wong CP (2008) J Phys Chem C 112:11403–11407CrossRefGoogle Scholar
  38. 38.
    Kim J, Kim EK, Kim SS (2013) J Colloid Interface Sci 392:376–381CrossRefGoogle Scholar
  39. 39.
    Tsujii K, Yamamoto T, Onda T, Shibuichi S (1997) Angew Chem Int Ed 36:1101–1102CrossRefGoogle Scholar
  40. 40.
    Meng H, Wang S, Xi J, Tang Z, Jiang L (2008) J Phys Chem C 112:11454–11458CrossRefGoogle Scholar
  41. 41.
    Quéré D (2002) Phys A Stat Mech Appl 313:32–46CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Chemistry and Chemical Engineering, Key Laboratory of Hexi Corridor Resources Utilization of Gansu UniversitiesHeXi UniversityZhangyeChina
  2. 2.College of Chemistry and Chemical Engineering, Key Laboratory of Eco-Environmental Related Polymer Materials of MOENorthwest Normal UniversityLanzhouChina

Personalised recommendations